Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Управляемые ядерные реакции

    Управляемые ядерные реакции [c.340]

    Как известно, энергия выделяется не только при делении ядер, но и при их синтезе, т. е. при слиянии более легких ядер в более тяжелые. Задача в этом случае состоит в том, чтобы, преодолев электрическое отталкивание, сблизить легкие ядра на достаточно малые расстояния, где между ними начинают действовать ядерные силы притяжения. Так, например, если бы можно было заставить два протона и два нейтрона объединиться в ядро атома гелия, то при этом выделилась бы огромная энергия. С помощью нагрева до высоких температур в результате обычных столкновений ядра могут сблизиться на столь малые расстояния, что ядерные силы вступят в действие и произойдет синтез. Начавшись, процесс синтеза, как показывают расчеты, может дать такое количество теплоты, которое нужно для поддержания высокой температуры, необходимой для дальнейших слияний ядер, т. е. процесс будет идти непрерывно. При этом получается такой мощный источник тепловой энергии, что ее количество можно контролировать только количеством необходимого материала. В этом и состоит сущность проведения управляемой термоядерной реакции синтеза. [c.13]


    Что такое управляемые ядерные реакции  [c.346]

    В основу принципа создания управляемых ядерных реакций легло следующее явление, открытое еще в 1940 г. советскими учеными Флеровым и Петржаком. [c.340]

    Новые применения ядерной техники в управляемом термоядерном синтезе. В настоящее время во ВНИИ ядерной физики РФ ведутся работы по прямому преобразованию энергии ядерных реакций в лазерное излучение оптического диапазона [2]. Задача инерционного термоядерного синтеза решается на установке Искра-5 с применением 12-канального лазера с суммарной мощностью излучения 30 кДж и длительностью импульса 0,3 не. Оптические зеркала направляют 12 лазерных лучей на мишень диаметром 2 мм лазерное излучение трансформируется в рентгеновское излучение, которое обеспечивает 3000-кратное сжатие сферической мишени диаметром 0,03 мм, содержащей дейтерий-тритиевую смесь. Нри этом радиус мишени уменьшается в 14 раз. Сейчас создается установка Искра-6 , мощность которой будет в 10 раз превышать мощность установки Искра-5 . [c.27]

    Источником тепла всех современных атомных энергетических установок является ядерный реактор — устройство, в котором протекает самоподдерживающаяся управляемая ядерная реакция. Ядерное горючее уран применяется в виде стержней, называемых тепловыделяющими элементами. Та часть реактора, в которой размещается уран и протекает реакция деления, называется активной зоной. Вокруг нее обычно располагается отражатель нейтронов. Назначение отражателя состоит в том, чтобы вернуть в активную зону реактора возможно большее количество вылетающих из нее нейтронов. В качестве отражателей применяются легкие металлы, углерод (в виде графита), обычный и тяжелый водород. Реактор должен иметь надежную защиту с тем, чтобы выделяющиеся в активной зоне излучения не проникали за пределы реакторов. [c.96]

    Количество нейтронов, способных продолжать ядерную реакцию, можно регулировать введением в реакционный объем стержней, поглощающих нейтроны. При этом ядерная реакция становится управляемой. Управляемую ядерную реакцию используют для получения электроэнергии на атомных станциях. Для выработки электроэнергии служат изотопы урана и изотоп плутония Ядерная энергия может освобождаться не только при делении тяжелых, но и при слиянии легких ядер. Реакции слияния легких ядер, происходящие при высоких температурах, составляющих миллионы градусов, называются термоядерными реакциями. Ниже приведены примеры термоядерных реакций  [c.37]


    Теплота, выделяющаяся внутри матриц тепловыделяющих элементов (твэлов) в результате контролируемой и управляемой ядерной реакции расщепления ядер урана-235 тепловыми нейтронами, отводится теплоносителем первого контура, циркулирующим под давлением, через активную зону корпуса реактора. Полученная тепловая энергия передается через герметичную поверхность теплообмена парогенераторов теплоносителю второго контура. [c.241]

    Необходимым условием работы, ядерных реакторов является наличие так называемых регулирующих стержней, которые поглощают избыточные тепловые нейтроны и тем самым способствуют протеканию управляемой ядерной реакции деления урана, исключая возможность взрыва. Разумеется, для изготовления регулирующих стержней необходимо выбирать материалы, хорошо поглощающие нейтроны, или, говоря на языке атомной физики, обладающие высокими величинами сечений захвата [c.213]

    Источником тепла всех современных атомных энергетических установок является ядерный реактор — устройство, в котором протекает самоподдерживающаяся управляемая ядерная реакция. Ядерное горючее — уран применяется в виде стержней, называемых тепловыделяющими элементами. Та часть реактора, в которой размещается уран и протекает реакция деления, называется активной зоной. Вокруг нее обычно располагается отражатель нейтронов. Назначение отражателя состоит в том, чтобы вернуть в активную зону реактора возможно большее количество [c.107]

    Тяжелая вода является весьма эффективным замедлителем нейтронов в ядерных реакторах. Дейтерий широко применяют в научных исследованиях. В дейтериево-тритиевой смеси проводят управляемую термоядерную реакцию, которая в ближайшие десятилетия должна перейти из лабораторий в промышленность и стать могучим источником энергии. [c.467]

    Атомные реакторы. Число нейтронов, способных к продолжению ядерной реакции, можно регулировать введением в реакционный объем стержней, замедляющих или поглощающих нейтроны. При этом ядерная реакция становится управляемой и используется в атомных реакторах для получения электрической энергии на электростанциях (АЭС), электрической и тепловой энергии на атомных теплоцентралях, электрической и механической энергии на транспортных объектах (атомоходах). [c.404]

    Ядерные реакции и синтез трансурановых элементов представляют собой ядерные процессы, осуществляемые и управляемые человеком. Основной метод возбуждения ядерных реакций осуществляется по схеме частица- ядро-мишень новое ядро, новые частицы. [c.65]

    Источниками нейтронов могут служить ядерные реакторы, в которых происходит управляемая цепная реакция деления ядер урана. Известны нейтронные генераторы, в которых для получения нейтронов- используют реакции взаимодействия дейтерия с тритием, а также другие устройства. [c.787]

    Дейтерий используется как горючее для производства водородной бомбы, как меченый атом в химии, медицине и технике. Будет использоваться как горючее для управляемых термоядерных реакций. В ядерно-ракетных двигателях дейтерий может использоваться в качестве замедлителя нейтронов. Дейтерий, как и водород, не токсичен. [c.277]

    На управляемых реакциях деления ядер (урана, плутония) основано действие ядерных реакторов. Расщепление ядер в атомных реакторах используется для производства энергии, получения трансурановых элементов, радиоактивных изотопов других элементов и и др. [c.661]

    Радиационный захват нейтрона устойчивыми ядрами является важной ядерной реакцией, которая часто приводит к образованию полезных радиоизотопов. Активный изотоп, получаемый в этой реакции, химически тождественен с материалом мишени. 0 обстоятельство часто обусловливает серьезные ограничения в полученной активности. Реакция Сциларда-Чалмерса, которая приводит к отделению активных атомов от материала мишени в силу отдачи кванта, может быть использована при благоприятных условиях для повышения активности материала. В настоящей статье обсуждаются некоторые факторы, управляющие этим процессом обогащения, и в особенности влияние интенсивного поля излучения цепного котла. [c.230]

    Область применения изотопов водорода, производимых электролизным методом. Тяжёлая вода представляет, как уже говорилось выше, огромный интерес для ряда областей физической химии, физики и техники. Кроме ядерной энергетики дейтерий используется для производства термоядерного оружия (в водородной бомбе основным компонентом является дейтерид лития — ЫО). В наши дни, несмотря на частичное разоружение, проблемы получения дешёвого дейтерия и эффективного концентрирования изотопов не теряют своей остроты, поскольку в перспективе основным источником энергии будут управляемые термоядерные реакции. [c.288]


    Одно из важнейших практических приложений физики изотопов лёгких элементов связано с проблемой управляемого термоядерного синтеза. Речь идёт о разработке и создании промышленного термоядерного реактора — экономичного и относительно безопасного в сравнении с реакторами деления источника энергии. Немалая роль в этих работах отводится поиску оптимального состава ядерного топлива. Рассматриваются как одно-, так и многокомпонентные смеси лёгких элементов, однако окончательный выбор в пользу только одного топливного цикла ещё не сделан. Изучение свойств лёгких изотопов и возможности их наработки, понимание механизмов ядерных реакций между лёгкими ядрами и знание точных величин сечений этих процессов имеет при этом существенное значение. [c.233]

    Можно поэтому предвидеть, что ядерные реакции в будущем явятся источником энергии несравнимо большей, чем энергия всех известных до сих пор запасов горючих ископаемых. Как бы ни была богата фантазия, трудно представить многочисленные практические возможности, которые откроются после овладения в больших масштабах управляемыми ядерными процессами [c.423]

    Сочетание этих двух реакций и лежит в основе термоядерного синтеза. Для того чтобы ядерная реакция синтеза гелия из водорода началась, исходные вещества необходимо нагреть до температуры 100 ООО 000°С. Поэтому такая реакция получила название термоядерной. В земных условиях она может быть осуществлена за счет ядерной реакции деления урана 235, при которой достигается температура, необходимая для реализации термоядерной реакции. Задача современной науки заключается в том, чтобы термоядерную реакцию сделать управляемой. [c.33]

    Почему для инициирования управляемой реакции ядерного синтеза требуются сверхвысокие температуры, в то время как для инициирования реакции ядерного деления н существует таких требований  [c.279]

    Сечение захвата — это способность ядра захватывать замедленные (тепловые) нейтроны служащие возбудителями и распространителями цепной ядерной реакции. С помощью веществ, имеющих большое сечение захвата, можно регулировать ход цепной реакции и, если нужно, гасить ее. Из таких веществ делают управляющие стержни атомных реакторов. [c.78]

    Первое искусственное осуществление ядерной реакции (Резерфорд, 1919) положило начало новому методу изучения атомного ядра. Открытие нейтронов (Чэдвик, 1932) привело к возникновению протонно-нейтронной теории атомных ядер, предложенной сначала Д. Д. Иваненко и Е, Н. Гапоном (1932) н в том же году Гейзенбергом. Вскоре Фредерик и Ирен Жолио-Кюри (1934) открыли явление искусственной радиоактивности В 1938 г. Хан и Штрассман осуществили деление атомного ядра урана, а в 1940 г. К. Д. Петржак и Г. Н. Флеров открыли явление самопроизвольного деления атомных ядер. В 40-х годах была осуществлена цепная ядерная реакция (Ферми) и вскоре был открыт новый вид ядерных превращений — термоядерные реакции. Дальнейшее развитие ядерной физики сделало возможным использование ядерной энергии. Позднее эти явления стали использовать при химических и биологических исследованиях. В настоящее время разрабатывается проблема осуществления управляемых термоядерных реакций. [c.19]

    Последние два десятилетия характеризуются крупными успехами в развитии ядерной физики и прежде всего осуществлением управляемой цепной реакции деления ядер атомов тяжелых элементов, Создание ядерного реактора и усовершенствование техники ускорения заряженных частиц открыли широкие возможности для получения искусственных радиоактивных изотопов, которые находят все большее применение в химии, медицине, биологии, технике и промышленности. Если сначала радиоактивные изотопы использовались в основном в качестве индикаторов или источников излучения, то сейчас они превращаются в доступное средство контроля различных технологических процессов и управления этими процессами. [c.6]

    Ядерный реактор. В отличие от нейтронного размножителя ядерный реактор — критическая система, в которой осуществляется самоподдерживающаяся, управляемая цепная реакция деления ядер урана. Спектр нейтронов, выделяющихся в процессе деления, заключен в широком энергетическом интервале от небольших энергий вплоть до 25 Мэе. Средняя энергия нейтронов деления равна примерно 2 Мэе, а наиболее вероятная энергия — 0,72 Мэе. Доля нейтронов с энергией более 0,1 Мэе составляет около 99% общего потока нейтронов деления 66% потока лежит между 0,5—3 Мэе. Выше 3 Мэе поток нейтронов уменьшается почти экспоненциально с ростом энергии. [c.71]

    Тяжелая вода является весьма эффективным замедлителем иейтроиов в ядерных реакторах. Дейтерий широко применяют в научных исследованиях. В дейтериево-тритиевой смеси проводят управляемую термоядерную реакцию. [c.456]

    Выделяющиеся нейтроны поглощаются ядрами и, при этом образуется дополнит, кол-во трития по р-ции Ы + + и = Т -I- Не. Тритий вступает в р-цию с дейтерием, вновь возникают нейтроны, способные взаимод. с и т.д. Теплотворная способность термоядерного горючего в 5-6 раз выше, чем у делящихся материалов. Запасы дейтерия в гидросфере составляют порядка 10 т, а его энергетич. ресурсы - св. 10 МДж. В наст, время практически осуществляются только неуправляемые р-ции (взрыв), широко ведется поиск методов осуществления управляемой термоядерной р-ции, позволяющей в принципе обеспечить человечество энергией практически на неофаниченный срок. с. а. КаЛакчи. ЯДЕРНЫЕ РЕАКЦИИ, превращения атомных ядер при взаимодействии с др. ядрами, элементарными частицами или у-квантами. Такое определение разфаничивает собственно Я. р. и процессы самопроизвольного превращения ядер при радиоактивном распаде (см. Радиоактивность), хотя в обоих случаях речь идет об образовании новых ядер. [c.514]

    Ко1 да атомы с большими атомными весами подвергаются естественному распаду, то этот процесс сопровождается выделением очень больших количеств энергии, которые можно определить по кинетической энергии а-частпц илп электронов и длине волны улучей. В то же время при построении тяжелых атомов из более легких должны быть затрачены громадные количества энергии. Поэтому стабильные атомы с малыми атомными весами следует бомбардировать частицами с высокой энергией. В качестве таких частиц используются нейтроны, получаемые при ядерных реакциях, наиример в атомном реакторе. Используются также протоны, дейтроны и а-частицы, полученные естественным или искусственным путем и ускоренные в сильных электростатических полях с напряженностью до миллиона вольт. Так были синтезированы тяжелые атомы из легких и возникла новая химия элементарных ядер. Ниже приводится несколько примеров исследований, проведенных в важной области искусственного илп управляемого превращеии элементов. [c.216]

    Единица энергии, применяемая для измерения энергии и массы микрочастиц. 1 эВ = 1,602 10 Дж = 1,602 х X 10 эрг. 1 атомная единица массы = 931,5 МэВ Устройство дпя осуществления управляемой ядерной цепной реакции делвния. Ядерные реакторы различают по энергии нейтронов, вь 3ывающих депение. Они бывают на тепловых, быстрых и промежуточных нейтронах Жизненно необходимая часть клетки. Управляет синтезом белков и через них — всеми физиологическими процессами в клетке. Ядро отделено от окружающей цитоплазмы оболочкой, содержит ядрышко, хромосомы и кариоплазму [c.183]

    Уран-235, уран-233 и плутоний-239 при захвате нейтрона подвергаются делению. В результате возникает ядерная цепная реакция. При ее постоянной скорости режим реакции называется критическим. Если реакция замедляется, ее режим считается подкритическим. В атомной бомбе подкритические массы соединяют для получения надкритической массы. В ядерных реакторах проводится управляемая реакция деления, что позволяет получать постоянную мощность. В активной зоне ядерного реактора находятся делящееся топливо, контрольные стержни, замедлитель и охлаждающая жидкость. Атомная электростанция напоминает обычную тепловую электростанцию с той лищь разницей, что вместо камеры сгорания обычного топлива в ней имеется активная зона реактора. В реакторах-размножителях ядерного топлива должно образовываться больще, чем расходоваться на получение энергии. Безопасность работы атомных электростанций вызывает определенные опасения. Кроме того, нерещенными проблемами остаются восстановление отработанных топливных стержней и захоронение высокорадиоактивных ядерных отходов. [c.275]


Смотреть страницы где упоминается термин Управляемые ядерные реакции: [c.341]    [c.278]    [c.538]    [c.247]    [c.19]    [c.15]    [c.96]    [c.423]   
Смотреть главы в:

Химия  -> Управляемые ядерные реакции




ПОИСК





Смотрите так же термины и статьи:

Реакции ядерные



© 2025 chem21.info Реклама на сайте