Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение окислов на электродах

    Таким образом, величина (1/2 ) АС п)[йп означает электродный потенциал окисного электрода по отношению к кислородному электроду в том же растворе. В определенных условиях окисел и электролит могут обмениваться только ионами Н" . [c.752]

    Поверхностные пленки снижают эффективность электрода. Обнаженный металл является значительно лучшим катодом, чем покрытый окислом последний не только может,препятствовать выделению водорода, но и создает дополнительное сопротивление в электрохимическом контуре. Поэтому определенную важность имеет стабильность окисла в растворе. Разность потенциалов, возникающая между алюминием и нержавеющей сталью, примерно такая же, как между алюминием и медью. В первом случае катодная нержавеющая сталь покрыта имеющей низкую проводимость окисной пленкой с высокими защитными свойствами. Поэтому контактный ток между этими двумя металлами сравнительно мал. Во втором случае, однако, окисел на катодной меди легко восстанавливается (как это описано в разд. 1.8 применительно к электрометрическому восстановлению) и восстановление кислорода происходит с высокой скоростью на элективной обнаженной поверхности металла. В этих двух случаях процесс идет с катодным контролем, т. е. эффективность катода определяет скорость коррозии, и это — обычная ситуация. [c.104]


    Для определения цинка [318] пробу переводят в окисел растворением в азотной кислоте с последующим выпариванием и прокаливанием при 600° С в течение 20 мин. Сжигание окислов в разряде дуги постоянного тока производится в кратере угольного электрода. Регистрация спектров — с помощью кварцевого спектрографа средней дисперсии. Аналитическая пара линий [c.196]

    А. Практически окисел не имеет пор. При контакте с кислым раствором окисная пленка растворяется и раствор начинает соприкасаться непосредственно с медной поверхностью. Преимущественному растворению подвергается определенная плоскость окисла, что вызывает увеличение шероховатости и возрастание емкости окисных (называемых так лишь в данном случае) электродов. [c.296]

    Депассивирующее или затрудняющее пассивацию влияние некоторых анионов также нельзя объяснить, считая причиной пассивности фазовый окисел. Большое число исследований показывает, что присутствие некоторых ионов в растворе либо тормозит, либо ускоряет анодный процесс. Рассмотрим некоторые данные. На рис. VI,36 [45] показано активирующее влияние S0 на железо. Кривая 2идет сначала сходно с кривой ф в обоих случаях близок, но 1, увеличивается при добавке S0 ". Следовательно, S0 принимает определенное участие в анодном растворении железа. Уменьшение тока после ф говорит об адсорбции, тормозящей анодный процесс (допустим, что адсорбируются ионы ОН ). При дальнейшем увеличении потенциала ток в присутствии S0 " снова возрастает (участок I). Возможно, что здесь пассивирующие ионы вытесняются ионами SO4". При этом поверхность электрода подвергается точечному [c.233]

    Изучение состояния перехода от одного установившегося значения потенциала к другому было использовано также в работе [55]. В 0,1 н. растворе Н2804 был исследован железный электрод, которому предварительно сообщалась наведенная радиоактивность. Это позволяло судить о количестве растворяющегося железа по радиоактивности раствора. Определялось и количество электричества, прошедшего за время перехода от одного потенциала к другому. Найдено, что около 80—90% всего количества электричества расходуется на растворение железа. Это не согласуется с положением, высказанным ранее, о постоянстве тока при растворении пассивного железа, который должен определяться скоростью химического растворения пленки окисла в кислоте (процесс, не зависящий от потенциала). 10—20% количества электричества расходуется на посадку пассивирующего кислорода. По мнению В. М. Новаковского и Ю. А. Ми-хачева, при этом может образовываться окисел. Найденные ими количества электричества, идущие на этот процесс, хорошо совпадают с толщинами пленки окисла, определенными в более ранних исследованиях. Работа [55] связывает вместе обе концепции пассивности, приписывая определенное значение образованию фазового окисла. [c.238]


    Джонс и Уинн-Джонс [198], изучая процессы окисления (и восстановлеиия) с помощью электрохимических методов и путем структурных определений на различных стадиях, получили существенные данные в пользу очень простого атомного механизма. Первичным продуктом окисления является N10 (ОН) он имеет гексагональную решетку, связанную с решеткой Ы1(0Н)г, и образуется из гидроокиси никеля путем отнятия электрона (металлом) от каждого иона N1 + и протона (раствором) от половины ионов ОН . Следующая стадия—дальнейшее отщепление электронов и протонов на этой стадии фазовых изменений не происходит, так как в решетке N10 (ОН) может разместиться большое число ионов N1 + и избыточных ионов О . Конечный окисел не представляет собой, однако, чистого НЮг (его не удалось получить), но содержит никель и кислород в отношении около 0,75, что соответствует приблизительно одинаковому числу ионов N1 + и N1 + в решетке Джонс и Уинн-Джонс предполагают, что электронная проводимость тем самым повышается настолько, что наблюдаемый разряд кислорода на внешней стороне пленки становится преобладающим анодным процессом. Постулированная протонная проводимость и почти полное отсутствие деформации решетки при окислении никеля в пленке от N1 через N1 до обьясняет хорошо известную стабильность окисно-никелевых электродов при многократном их окислении и восстановлении. Гипотеза о протонной проводимости, аналогичная выдвинутой в теории стеклянного электрода и воды, была предложена Хором [199] для случая диффузии водорода через окись магния ири высоких температурах она имеет, возможно, более существенное значение, чем это принималось при исследовании электролитических процессов, протекающих в окисно-гидроокисных пленках при обычных температурах. Файткнехт и его школа [200—203] рассмотрели процесс М" (ОН),М " 0(0Н)- -Н "где М — марганец, железо, магний или никель. [c.335]

    Образование на поверхности металла первичной монослой-ной окисной пленки приводит к тому, что скорость растворения металла резко (в 10 —10 раз) снижается, а плотность анодного тока при этом определяется процессами перехода катионов из металла в окисел, перемещением катионов или анионов окисла через окисел, переходом катионов из окисла в раствор. Кинетика каждого из этих процессов сильно отличается от кинетики выхода катиона в раствор из мест выступов решетки при активном растворении. Однако имеется и нечто общее для электродных процессов, протекающих как из активного, так и из пассивного состояний скорость любого из этих процессов зависит от напряженности электрического поля на границе металл—электролит, снижающейся по мере роста ее толщины. При постоянном потенциале ток пассивного растворения падает во времени и после очень длительного периода (многие недели) на очень стойких сплавах достигает чрезвычайно низких значений (Ю- А/см ). Наличие на поверхности пассивного металла фазовых окислов подтверждено экспериментально. Пассивная пленка на коррозионно-стойкой хромоникелевой стали имеет толщину 30—100 А [73]. Чаще всего такая пленка представляет собой кислородное соединение металла. Пассивное состояние металла поддерживается лишь в строго определенной области потенциалов. При смещении потенциала в область отрицательнее Фляде-потенциала за-пассивированный электрод реактивируется. Пассивная пленка на [c.10]

    Из,мерения Вайля показали, что в 1 H2SO4 при ср = +870 мв, т. е. примерно на 120 мв выше Фладе-потенциала, окисел накапливается в количестве, эквивалентном —8 mkI m . Если принять, что истинная поверхность электрода в три раза больше видимой, то при пересчете на FegOg можно получить для толщины пленки значение 14 А. Такой метод определения толщины пленки имеет по сравнению с другими методами то преимущество, что он использует только данные из опытов ио пассивации и не учитывает данных из опытов по активации. Поэтому этот метод свободен от неточностей, связанных с влиянием распространения активности. [c.586]

    С(1 в (М(0Н)2 и в процессе катодного восстановления С(1(0Н)2 до металлического С(1. Если объемный окисел Сс1(0Н)2, выпадая из раствора в результате 1 идролиза комплексного аниона кадмия, не будет создавать на поверхности металла плотного изолирующего слоя, то анодное растворение кадмия в щелочи должно было бы происходить до полного механического разрушения электрода. Однако в действительности, судя по кривым зависимости потенциала от количества прошедшего электричества, растворение кадмия происходит с постоянной скоростью и при постоянном потенциало лишь до определенного предела, завпсяхцего от концентрации щелочи и плотности тока. Затем наступает резкая пассивация электрода, не связанная с какими бы то ни было нарушениями механической прочности электрода. Очевидно, в процессе анодной поляризации, наряду с растворением кадмия, на поверхности электрода происходят изменения, в результате которых в некоторый критический момент прекращается дальнейший процесс анодпого растворения. Такими изменениями могут быть образованио пассивирующего слоя в результате накопления гидроокиси па поверхности металла или в результате образования поверхностного окисла. [c.572]



Смотреть страницы где упоминается термин Определение окислов на электродах: [c.335]    [c.588]   
Смотреть главы в:

Современные проблемы электрохимии  -> Определение окислов на электродах




ПОИСК





Смотрите так же термины и статьи:

Электроды для определения



© 2025 chem21.info Реклама на сайте