Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кадмий растворение анодное

    В задачу электрометаллургии входят получение и очистка металлов с использованием электрического тока. Электрометаллургия включает в себя три большие ветви электроэкстракцию, электрорафинирование и электролиз расплавов. Электроэкстракция состоит в получении металлов из растворов путем электролиза. Часто таким способом удается получить не только металлы высокой степени чистоты, но одновременно осуществить это и с наименьшими экономическими затратами (например, в случае кадмия, хрома, кобальта, железа, цинка). При электрорафинировании загрязненный металл очищают, подвергая его анодному растворению и последующему осаждению на катоде при соответствующем выборе условий электролиза. Таким образом получают медь, золото, серебро, свинец, висмут, никель, олово высокой степени чистоты. Электролиз расплавов является промышленным способом получения алюминия, щелочных и щелочноземельных металлов. Эти металлы выделяются в жидком виде, так как электролиз проводится при высоких температурах, а указанные металлы являются [c.7]


    Электролиз водных растворов — важная отрасль металлургии тяжелых цветных металлов меди,висмута, сурьмы,олова, свинца, никеля, кобальта, кадмия, цинка. Он применяется также для получения благородных и рассеянных металлов, марганца и хрома. Электролиз используют непосредственно для катодного выделения металла после того, как он был переведен из руды в раствор, а раствор подвергнут очистке. Такой процесс называют электроэкстракцией. Электролиз применяется также для очистки металла — электролитического рафинирования. Этот процесс состоит в анодном растворении загрязненного металла и в последующем его катодном осаждении. Рафинирование и электроэкстракцию проводят с жидкими электродами из ртути и амальгам (амальгамная металлургия) и с электродами из твердых металлов. К электролитическим способам получения металлов относят также цементацию — восстановление ионов металла другим более электроотрицательным металлом. Цементация основана на тех же принципах, что и электрохимическая коррозия при наличии локальных элементов. Выделение металлов осуществляют иногда восстановлением их водородом, которое также может включать электрохимические стадии ионизации водорода и осаждение ионов металла за счет освобождающихся при этом электронов. [c.227]

    Отсутствие надежных данных по кислородному перенапряжению объясняется сложностью процесса анодного образования кислорода и почти неизбежным наложением на него побочных и вторичных реакций. Прежде всего необходимо напомнить, что обратимый кислородный электрод экспериментально реализовать чрезвычайно сложно, и, следовательно, входящая в уравнение (20.5) величина не определяется опытным путем. Ее обычно рассчитывают теоретически. Для выделения газообразного кислорода из растворов кислот необходимо, чтобы потенциал анода был более положительным, чем равновесный потенциал кислородного электрода ( + 1,23 В при ан = 1 и 25° С), на величину кислородного перенапряжения, отвечающую данной плотности тока. Однако еще до достижения такого высокого положительного потенциала больщинство металлов термодинамически неустойчивы, и вместо реакции выделения кислорода идет процесс их анодного растворения или окисления. Для изучения кинетики выделения кислорода из кислых сред можно использовать поэтому только металлы платиновой группы и золото (стандартные потенциалы которых ноложительнее потенциала кислородного электрода), а также некоторые другие металлы, защищенные от растворения в кислотах стойкими поверхностными оксидами. В щелочных растворах, где равновесный потенциал кислорода менее положителен (при аоп-= 1 и 25° С он составляет около +0,41 В), в качестве анодов применяют также металлы группы железа, кадмий и некоторые другие. Установлено, что в условиях выделения кислорода поверхность всех металлов, включая платину и золото, оказывается в большей или меньшей степени окисленной, и поэтому кислород выделяется обычно не на самом металле, а на его оксидах. [c.421]


    На фиг. 120 показана схема технологического процесса гальванического покрытия алюминия и его сплавов с предварительным анодированием в фосфорной кислоте. На полученные таким образом пленки можно наносить непосредственно медь, кадмий и серебро. Так как при использовании сильно щелочных электролитов существует опасность растворения анодной пленки до того, как начнет осаждаться металл, рекомендуется сначала нанести промежуточное покрытие меди из пирофосфорного раствора. [c.336]

    Свойства максимумов, образующихся на анодных кривых при растворении амальгам, такие же, как и на волнах деполяризаторов, находящихся в растворе. Наиболее высокие максимумы (приблизительно в два раза превышающие предельный ток) дают амальгамы таллия, кадмия и цинка, в случае же олова и свинца максимумы значительно ниже. Полярографическое растворение амальгам меди и висмута происходит без образования максимума [12]. [c.407]

    Никель, медь, кадмий и серебро можно наносить непосредственно на оксидную пленку, однако, как указывает Банк, существует возможность растворения анодной пленки, до того как будет осажден металл, если покрытие производится в сильно щелочном растворе. [c.329]

Рис. Б. Пики анодного тока растворения кадмия, свинца и меди при их определении на уровне единиц мкг-л в различных объектах (см. п.п. 32-37 Приложения 2) Рис. Б. Пики <a href="/info/1072740">анодного тока растворения</a> кадмия, <a href="/info/352900">свинца</a> и меди при их определении на уровне единиц мкг-л в <a href="/info/172801">различных объектах</a> (см. п.п. 32-37 Приложения 2)
    Сконцентрированный на поверхности твердого электрода металл подвергают анодному растворению, снижая напряжение и регистрируя возникающий анодный ток. Сила анодного тока при определенных условиях пропорциональна концентрации ионов металла в растворе. На таком принципе основаны, например, методики определения серебра в металлическом кадмии, ртути и серебра — в оксалатах аммония или калия, кадмия, свинца и меди — в цинке, кобальта — в молибдате аммония и др. [c.499]

    Аналогичная картина должна наблюдаться и нри замедленном протекании других стадий. В связи с этим при не слишком больших удалениях от состояния рав-нозесия обнаруживается некоторая симметрия в протекании процессов катодного выделения металлов и их анодного растворения. Так, например, анодная по-ляризация ртути, серебра, таллия и кадмия оказывается близкой по величине к катодной поляризации этих же металлов при одинаковых катодной и анодной плотностях тока, т. е. при равной скорости осаждения и растворения. Изменение анодного и катодного перенапряжения с ростом плотности тока точно так же подчиняется для этих металлов примерно одному и тому же закону. [c.476]

    Коррозионные потенциалы амальгам в растворах солей соответствующих металлов почти достигают значений обратимого потенциала легирующего компонента благодаря очень низкой скорости коррозии и отсутствию заметной анодной поляризации. Например, коррозионный потенциал амальгамы кадмия в растворе С(1504 ближе к термодинамическому для реакции Сс1 - Сс " - - 2ё, чем для чистого кадмия в этом же растворе. Стационарная скорость коррозии чистого кадмия значительно выше, чем его амальгамы, что ведет к еще большим отклонениям измеряемого коррозионного потенциала от соответствующего термодинамического значения. Вообще говоря, стационарный потенциал любого металла, более активного, чем водород (например, железа, никеля, цинка, кадмия) в водных растворах, содержащих собственные ионы, отклоняется от истинного термодинамического значения на величину, зависящую от преобладающей скорости коррозии, которая сопровождается разрядом Н+ [17]. Измеренные значения положительнее истинных. Это справедливо также и для менее активных металлов (например медь, ртуть), которые корродируют в присутствии растворенного кислорода. [c.64]

    Методы выделения кобальта электролизом и его отделение от других элементов рассмотрены на стр. 90. Был предложен метод разделения кобальта и цинка [339], основанный на выделении обоих элементов на ртутном катоде и последующем анодном растворении полученной амальгамы. Прн этом цинк переходит из амальгамы в виде ионов в водный раствор, а кобальт выделяется пз амальгамы с большим перенапряжением и поэтому практически полностью остается растворенным в ртути. Проверка метода показала [39], что разделение не количественно, много цинка остается в амальгаме. Для отделения кобальта от цинка и кадмия было предложено проводить электролиз из щелочного раствора, содержащего тартрат натрия-калия и иодид калня последний прибавляется для предотвращения окисления кобальта на аноде до высшего окисла [1449, 1463]. Изучены условия отделения висмута от кобальта электролизом [66а]. [c.87]


    Кадмий, будучи электроотрицательнее индия, при анодном растворении индия, содержащего кадмий, переходит в раствор, и его ионы могут частично восстанавливаться совместно с индием-При электролитическом рафинировании индия, содержащего примеси, рекомендуется вести электролиз при строгом соблюдении постоянства заданного потенциала (см. гл. I, 9). При этом можно получать индий, содержащий десятитысячные доли процента олова, кадмия и железа. Нередко в практике пользуются амальгамой индия в качестве анода. [c.556]

    Исследование механизма анодного растворения кадмия в растворе КОН методом вращающегося дискового электрода с кольцом показало, что экспериментальные значения коэффициента конвективного переноса меньше теоретического значения Л/т, причем Л п уменьшается по мере разбавления раствора щелочи и уменьшения скорости вращения электрода [39]. [c.133]

    Поскольку перед поступлением на электролиз свинец подвергается рафинированию пирометаллургическими способами, в частности, окислению, то в анодах почти не содержится более электроотрицательных, чем свинец, металлов (2п, Ре, N1, Со и др.). Если они все же присутствуют, то при электролизе происходит их анодное растворение и накапливание в электролите. Более электроположительные металлы (Си, В1, Ag, Аи и др.), а также кадмий в основном не растворяются и выпадают в шлам. Попадание их [c.113]

Рис. 1. Кривая анодного растворения цинка, кадмия и свинца, полученная для образца фосфора высокой чистоты, содержащего 2,6-10-5% 2п, 4.10-5% С(1 и 4-10-5 %РЬ Рис. 1. <a href="/info/1908007">Кривая анодного растворения</a> цинка, кадмия и <a href="/info/352900">свинца</a>, полученная для образца <a href="/info/900528">фосфора высокой</a> чистоты, содержащего 2,6-10-5% 2п, 4.10-5% С(1 и 4-10-5 %РЬ
    Контактно выделившийся металл не образует сплошного покрытия, а присутствует на поверхности в виде отдельных островков типа коралловых атоллов с просветами между ними, частично заполненными единичными адатомами. Подобная картина наблюдается и при контактном выделении ряда других металлов — кадмия, свинца, таллия. Такой осадок не создает замкнутых препятствий анодному растворению основного металла, повышая в то же время перенапряжение водорода. В соответствии с этим падает и скорость коррозии [c.85]

    Нами разработан метод синтеза сернокислого и хлористого олова и сернокислого кадмия анодным растворением металлов с применением в качестве диафрагмы анионитовых мембран марки МА-40-2с. Выделение солей из растворов (анолитов) осуществляли кристаллизацией. Наиболее эффективно применение описываемой методики для тоннажных производств. [c.41]

    Ртутные электроды в основном применяются для реакций восстановления, так как при наложении анодных потенциалов ртуть довольно легко окисляется (приблизительно около +0,4 В), особенно в присутствии хлоридов. В обычной ртути, используемой в лаборатории, могут присутствовать поверхностные оксиды и примеси растворенных металлов, например цинка и кадмия. Их удаляют встряхиванием ртути с водным раствором 2 моль/л азотной кислоты. Далее ртуть промывают, высушивают и отфильтровывают че- [c.82]

    Анодное растворение кадмия изучено на кадмиевом и кадмиево-амальгамном электродах. Процесс двухстадийный [1020, 76 682, 683]  [c.110]

    Амальгамная полярография с накоплением часто используется для определения субмикрограммовых количеств кадмия, особенно — в материалах высокой чистоты. Она основана на электролизе анализируемого раствора со стационарным ртутным микроэлектродом (в частности — с лежаш,ей каплей ртути) и последующем анодном полярографировании — растворении металла из по-лученной амальгамы. Положение пиков на такой полярограмме характеризует определяемый ион, а их глубина — его содержание в растворе [69, 204] [c.109]

    В электролитическую ячейку с выдавливаемой каплей ртути (рис. 22) помещают 25 мл исследуемого раствора, 0,1М по КС1 (очищенного от тяжелых металлов хроматографическим путем) и продувают азот (освобожденный от кислорода) 30 мин. Затем поворотом винта выдавливают капли ртути первые две сбрасывают, третью оставляют для работы. На электроды ячейки подают напряжение, на 0,2 в большее, чем определяемого иона (для С(1 — 0,8 в) и ведут электролитическое обогащение ртутной капли кадмием при перемешивании раствора током азота в течение 30 мин. Затем перемешивание прекращают и спустя 1—2 мин., после успокоения раствора, с постоянной скоростью (400 мв/мин). понижают напряжение до —0,2 в, регистрируя при этом кривую анодного растворения амальгамы кадмия его концентрацию рассчитывают по методу добавок. [c.109]

    В общем для получения аналитических концентратов описаны следующие методы а) соосаждение с коллектором, в том числе с органическим коллектором б) экстракция, в том числе экстракция с твердыми при обычной температуре органическими растворителями в) дистилляция, сублимация в вакууме и т. п. т) ионообменная или молекулярная хроматография, в том числе способ тонущих частиц и др. д) электролиз, а также анодное растворение -анализируемого металла с одновременным электроосаждением основного металла на катоде е) цементация, т. е. осаждение более благородных металлов на металлическом цинке или кадмии ж) зонная плавка а) магнитная сепарация. [c.157]

    Анодное растворение металлов в активном состоянии протекает обычно с менее заметной поляризацией, и для этого процесса наклон поляризационной кривой мал, что можно видеть из результатов, полученных при растворении кадмия в серной кислоте и щелочи с различным значением pH  [c.28]

    Анод представляет собой смесь двух или нескольких металлов. Потенциал такого электрода определяется тем компонентом сплава, максимальная работа образования ионов которого наиболее положительна. Сплав посылает в раствор ионы этого меггалла до тех пор, пока он находится в соприкосновении с раствором. Например, сплав цинка и кадмия при анодном растворении практически посылает в раствор только ионы цинка, а кадмий остается на электроде. [c.94]

    Цинк и кадмий являются анодными по отнощению к стали и обеспечивают катодную защиту основного металла, когда используются в качестве покрытий. При экспозиции в промышленной атмосфере цинк будет защищать сталь более длительный период, чем кадмий, в то время как в морской или сельской атмосфере кадмий обеспечивает защиту более длительный период. Лайтон [1] относит эти различия в поведении к природе продуктов коррозии, образованных в различных средах. В промышленной атмосфере идет растворение сульфатов как цинка, так и кадмия, поэтому они могут удаляться дождем, обнажая поверхность металла. В этих условиях цинк, который имеет более отрицательный потенциал, чем кадмий, в большинстве сред является более эффективным анодом и защищает основной металл более продолжительный период. Однако при испытаниях в сельской и морской атмосфере карбонаты и основные хлориды кадмия, которые образуются в этих условиях, нерастворимы и замедляют процесс коррозии в большей мере, чем более растворимые карбонаты и основные хлориды цинка, так что кадмий в этом случае обеспечивает более длительную защиту. [c.394]

    Ультразвук в одних случаях затрудняет наступление пассивности металлов (при анодном растворении железа, меди, кадмия, стали Х18Н9) в результате десорбции кислорода и диспергирования защитных пленок, а в других случаях (А1 и Ni в NaaS04, Fe в NaOH + СГ) облегчает пассивацию, по-видимому, из-за удаления с поверхности металла активаторов. [c.369]

    По механизму защиты различают металлические покрыти5( анодные и катодные. Металл анодных покрытий имеет электродный потенциал более отрицательный, чем потенциал защищаемого металла. В случае применения анодных покрытий ие обязательно, чтобы оно было сплошным. При действии растворов электролитов в возникающем коррозионном элементе осноиной металл — покрытие основной металл является катодом и поэтому при достаточно большой площади покрытия не разрушается, а защищается электрохимически за счет растворения металла покрытия. Примерами анодных покрытий являются покрытия железа цинком и кадмием. Анодные покрытия на железе, как правило, обладают сравнительно низкой коррозионной стойко- [c.318]

    Получение металлов высокой чистоты [1]. Цинк марки ЦВ, содержащий 99,99% 2п, и кадмий, содержащий 99,99% С(1, получают дистилляцией катодных металлов. Для получения цинка более высокой чистоты (99,999% 2п) разработан метод переочистки электролитический металл растворяют химически или анодно. При химическом растворении полученные электролиты подвергают глубокой очистке, электролиз проводят в электролизере с диафрагмой и нерастворимыми анодами. При анодном растворении осуществляется двухстадийная очистка вначале проводят анодное растворение обычного промышленного металла и его катодное осаждение, а затем повторное переосаждение полученного металла. [c.279]

    Ввиду электроотрицательного потенциала, электроположительные металлы— медь, сурьма, висмут, мышьяк при анодном растворении таллия должны остаться на аноде, в сульфатных растворах свинец также перейдет в осадок. Цинк, железо, кадмий и частично олово перейдут в раствор. Наиболее опасными примесями являются олово и кадмий, поэтому их следует удалять при предварительной очистке раствора, что вполне возможно, если использовать плохую растворимость Т1С1 и хорошую растворимость ТЬСОз. [c.563]

    Из-за накопления примесей (например, кадмия) электролит нужно часто заменять — после 100 ч работы. Из отработанного электролита таллий осаждают хлоридом натрия. Свежий электролит готовят анодным растворением таллия в 70—75 г/л Н2504 с никелевым катодом. В процессе анодного рафинирования таллий очищается от более электроположительных примесей (РЬ, Си, Ag) и частично от Сс1. При переплавке катодной губки под щелочью таллий дополнительно очищается от примесей [138]. [c.358]

    Кадмий в э.тектролит вводится анодным растворением. Вместо кадмии в электролит можно вводить в цинк Прн уве1ичении концентрации в электролите кадмия до 35—40 илн цннка до 30 г/л хромовые покрытия толщиной 15—18 мкм практически бесиористы. [c.111]

    Свинец. Чистый свинец или его сплавы можно использовать как анод при проведении процесса в серной кислоте, добавление I % серебра, 0,3 % олова и небольшого количества кобальта увеличивает коррозионную стойкость такого электрода. Добавки других металлов могут учучшить выход продуктов конкретного электродного процесса. Так, добавление сурьмы или кадмия к свинцовому аноду [П1] благоприятно влияет на окисление о-толуолсульфонамида до имнда о-сульфобензошюй кислоты (сахарин). Тот же результат дает использование чистого свинцового анода, если в анолит добавить ЗЬ Оз [П2]. При использовании анода из сплава свинца с сурьмой, по-видимому, происходит анодное растворение сурьмы, которое оказывает тот же эффект, что и добавка 5Ь Оз в анолит. [c.187]

    В отсутствие специфически адсорбируемых анионов скорость образования ( d)ад сравнима со скоростью образования d растворитель. В присутствии лигандов в основном замедленной является вторая стадия образования d +. Ионы кадмия значительно ускоряют анодную реакцию. Поляризационные измерения в растворах на основе АН и ДМФ на кадмиевом электроде в присутствии различных анионов NO3-, BF4-, IO4 , Вг , С1-— показывают широкую распространенность механизма анодного растворения металла в [c.110]

    Начиная с определенной критической концентрации соли дальнейшее повышение содержания этой соли в растворе в 10 раз сопровождается увеличением скорости анодного процесса почти в 10—10 раз, например, при растворении кадмия в серной кислоте с добавками иодидов, бромидов и хлоридов, а также при анодном растворении амальгамы индия. Это вызывается адсорбционо-хи-мическим взаимодействием анионов с поверхностью металлов, заключающемся в специфической адсорбции анионов, которая начинается при значительно более отрицательных потенциалах, чем потенциал растворения электродного металла. [c.77]

    Кинетика процесса выделения и растворения кадмия на кадмиевом электроде в ацетамиде была изучена в работах [132]. При относительно невысокой поляризации (п >25мВ) анодная поляризационная кривая подчиняется уравнению Тафеля с коэффициентом наклона 0,065 В. Тангенс угла наклона катодной поляризационной кривой оказался значительно выше и составил 0,151 В. Вычисленные для анодной и катодной реакций коэффициенты переноса оказ-ались со- ответственно равными 1,43 и 0,56. На основании полученных данных авторы сделали вывод, что механизм разряда-ионизации кадмия в разбавленных растворах (0,05 М Сс1С12) ацетамида протекает стадийно  [c.59]

    Удаление некачественных кадмиевых покрытий, с основного металла кадмшТ Удаляют без особых трудностей. Чаще всего для этих целей применяют раствор, содержащий 120 г/л нитрата аммония при 20—25°С. Раствор позволяет снять кадмий со стали, латуни и меди. Анодное растворение кадмия ведут в растворах цианидов (70—90 г/л [c.178]

    На примере 10" — 10растворов свинца, кадмия и марганца была изучена зависимость обратных бросковых токов от концентрации перечисленных ионов в растворе (рис. 3). Во всех случаях наблюдается линейная зависимость. Аналогичные результаты получены и другими авторами методом анодного растворения при постепенно снижающемся потенциале [10—11]. [c.182]

    Водную фазу, содержащую определяемые примеси, выпаривают в кварцевой чашке досуха при 210° С в течение 1 часа. Остаток должен быть белым, в противном случае его смачивают хлорной кислотой и выпаривают досуха. В последнем случае примеси металлов переводят в хлориды добавлением нескольких капель НС1 и выпариванием раствора досуха. Остаток растворяют в точно отмеренных 5—10 мл 0,2 М раствора КОН или NaOH (фон I), (добавляя его дважды по 2,5 или 5 мл и сливая растворы в электролизер), или в 5—10 мл 0,5 М раствора КОН + 0,25Ai раствора этилендиамина в соотношении 1 1 (фон II). Формируют каплю ртути, подключают азот для перемешивания и проводят предэлектролиз при —1,6 в (нас. к. э.) в течение 15—30 мин. и еще 0,5—1 мин. при выключенном азоте. Затем регистрируют кривую анодного растворения цинка , переключив потенциометрический барабан в обратном направлении, от —1,6 до —1,0 в. Сбрасывают ртутную каплю, формируют новую и определяют свинец и кадмий (суммарный пик), а также медь, проводя предэлектролиз при —1,0 в в течение 15— 30 мин. и регистрируя кривую от —1,0 до —0,1 в. [c.190]

    ОДОМ, и комллвксон III (трилон Б) до концентрации 1,5 10 М. Фор мируют новую ртутную каплю, проводят электролиз при —0,8 в в течение 15—30 мин. и регистрируют кривую анодного растворения свинца с остановкой потенциометрического барабана при потенциале от —0,47 до —0,55 в для растворения кадмия и индия. Анодный ток кадмия определяют по разности. [c.191]


Смотреть страницы где упоминается термин Кадмий растворение анодное: [c.226]    [c.12]    [c.12]    [c.12]    [c.427]    [c.505]    [c.125]    [c.110]    [c.111]    [c.323]    [c.91]   
Методы разложения в аналитической химии (1984) -- [ c.268 ]




ПОИСК





Смотрите так же термины и статьи:

Анодное растворение

Исследование кинетики анодного растворения кадмия

Ток анодный



© 2025 chem21.info Реклама на сайте