Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

РНК Полимераза структура

    По аминокислотной последовательности субъединицы РНК-полимераз далеких видов бактерий существенно различаются, но по пространственной структуре, по-видимому, весьма сходны, так как в пробирке удается собирать активные гибридные молекулы, часть субъединиц которых взяты от одного вида бактерий, а часть— от другого. [c.136]

    Фактор р присоединяется к РНК-продукту до того, как РНК-полимераза достигает терминатора. Присоединение происходит к определенным участкам РНК, в нуклеотидной последовательности которых пока не обнаружено каких-либо характерных особенностей. Ясно лишь, что эти участки не склонны к образованию протяженных двуспиральных структур. [c.157]


    Транс-действующие факторы транскрипции, связывающиеся с элементами про.мотора РНК-полимеразы I, не изучены. Значительно больше известно о структуре и механизмах действия белковых факторов транскрипции, взаимодействующих с РНК-полимеразой III. [c.209]

    После трансляции вновь синтезированных мРИК и накопления соответствующих белков начинается собственно репликация генома ВВС. Сначала синтезируются точные, полноразмерные (+)копии вирусного генома. Для этого необходимо подавить буксование РНК-полимеразы на полиуридиловых последовательностях матрицы, а также внутреннюю терминацию. Предполагают, что такое регуляторное переключение происходит в результате взаимодействия вирус-специфических белков (вероятно, белка N) с растущей (+)це-пью. Во всяком случае, все имеющиеся в зараженной клетке полноразмерные молекулы (+)РНК находятся там в виде РНП, сходного по структуре с РНП, содержащим геномную (—)РНК. В заключение на полноразмерной (+)РНК синтезируются (—)нити, которые включаются в состав дочерних вирионов. [c.325]

    Неправильное спаривание оснований, образование димеров, вставок или выпадение оснований, а также другие повреждения структуры ДНК, вызванные мутациями, могут быть исправлены. Специальные ферменты (эндо- и экзонуклеазы, рестриктазы и полимеразы) способны удалять лишние основания или заполнять бреши , создавая нативную структуру ДНК. [c.53]

    ДНК-полимераза существует в различных формах в зависимости от выполняемых ею функций. Хотя это кажется невероятным, разнообразие форм ДНК-полимеразы обусловлено не субъ-единичной структурой, по крайней мере в бактериальных ферментах. Были охарактеризованы три различные формы фермента из бактерии Е. oli, которые обозначили как полимераза I, И и III. ДНК-полимераза I выполняет в основном репарирующие функции, тогда как ДНК-полимераза П1 является ферментом репликации. Функции ДНК-полимеразы II еще не ясны. Ферменты млекопитающих также существуют во множественных формах. [c.150]

    В 1953 г. Дж, Уотсон и Ф. Крик сумели правильно интерпретировать данные рентгеноструктурного анализа ДНК, накопленные в лабораториях Р. Франклин и 14. Уилкинса, и на их основе построить модель пространственной структуры ДНК- Они показали, что макромолекула ДНК — это регулярная двойная спираль, в которой две полинуклеотидные цепи строго комплементарны друг другу. Из анализа модели следовало, что после расплетания двойной спирали на каждой из полинуклеотидных цепей может быть построена комплементарная ей новая, в результате чего образуются две дочерние. молекулы, не отличимые от материнской ДНК. Через пять лет М. Мезельсон и Ф. Сталь экспериментально подтвердили этот механизм, а несколько раньше (1956) А. Корнберг открыл фермент ДНК-полимеразу, кщ-орый на расплетенных цепях, как на матрицах, синтезирует новые, комплементарные им цепи ДНК. [c.6]


    Несколько отличный путь используется для репарации повреждений ДНК, заметно нарушающих структуру молекулы, например пиримидиновых димеров, образующихся под действием ультрафиолета. Такие повреждения удаляет специальный фермент — эндонуклеаза иугАВС (в темноте, когда не работает фотолиаза или когда повреждений в ДНК очень много), а нуклеаза разрывает фосфо-днэфирные связи с 5 - и с З -конца от поврежденного участка, а затем с помощью белка иугО, хеликазы И, поврежденный участок удаляется сопряженно с гидролизом АТР. Образующуюся брешь застраивает ДНК-полимераза I (рис. 46). [c.78]

    Оказавшись на промоторе, РНК-полимераза образует с ним так называемый закрытый промоторный комплекс, в котором ДНК сохраняет двуспиральную структуру. В закрытом комплексе РНК-полимераза еще не способна к синтезу РНК- Этот комплекс нестабилен и легко диссоциирует при повышании ионной силы. [c.138]

    Для понимания механизмов взаимодействия РНК-полимеразы с промоторами и с белками регуляторами важно знать пространственную структуру их комплексов с ДНК. К сожалению, в настоящее время почти ничего не известно о деталя.ч пространственной структуры РНК-полимеразы и. s частности, о структуре.ее участков, азаимодействуюши с ДНК. Приблизительное [c.142]

    Принципы действия энхансеров, способных оказывать свое влияние на значительном расстоянии (более чем тысячи нуклеотидных пар) и вне зависимости от ориентации по отношению к старту транскрипции, не выяснены. Короткие нуклеотидные блоки могут служить центрами связывания специфических ядерных белков, выступающих как транс-действующие факторы. Сила энхансера, вероятно, может зависеть от числа таких блоков (модулей). Обсуждаются следующие два основных механизма действия энхансеров. Считается, что функциональные участки генома, содержащие один или несколько генов, образуют длинные петли, включающие десятки тысяч нуклеотидных пар ДНК. Высказано представление, что петли закреплены в матриксе клеточного ядра и могут быть сверхспира-лизованы. В состав матрикса входит топоизомераза И, по-видимому, определяюш,ая топологию петли ДНК (см. гл. ХП), В таком случае взаимодействие энхансера с бе.1ками может менять конформацию всей петли, включая и удаленный от энхансера участок ДНК, в результате чего в составе петли изменяется локальная структура хроматина и облегчается транскрипция гена (рис. 112,6). Более вероятно, что влияние энхансера, связанного с белком, определяется его непосредственным взаи.чодействием с РНК-полимеразой и другими факторами транскрипции в процессе инициации- Такое взаимодействие может осуществляться благодаря сгибанию молекулы ДНК, что создает возможность непосредственного контакта районов промотора и удаленного от него энхансера, связанных со специфическими белками (рис. И2, в). [c.204]

    Во всех трех случаях первая затравка для синтеза —) цепи образуется на совершенно определенном участке фагового генома, разном у разных фагов. Соответствующий участок, очевидно, содержит сигналы в виде последовательности нуклеотидов и элементов вторичной структуры, которые специфически узнаются соответственно РНК-полимеразой (в ДНК фага М13), праймазой (у G4) и полипептидом п (у срХ174). Подчеркнем, что в разобранных случаях матрицей для образования затравки является не голая ДНК, а дезоксирибонуклеопротеид, образованный в результате взаимодействия ДНК с ДНК-связывающим белком Е. oli. [c.263]

    Элонгация (удлинение) цепи ДНК осуществляется ДНК-зависи-мыми ДНК-полимеразами. В этой реакции участвуют также и вспомогательные белки, наборы которых могут различаться в разных системах и на разных этапах репликации одного и тогд же генома. В частности, различны эти наборы при синтезе ДНК на однонитевой матрице (или, как говорят, при репарационном синтезе) и на двухнитевой матрице (при синтезе с вытеснением цепи). В первом случае важным вспомогательным участником реакции являются ДНК-связывающие белки, которые превращают матрицу в дезоксирибонуклеопротеид. При этом исчезают многие из элементов вторичной структуры матрицы, она как бы выпрямляется , что облегчает поступательное и процессивное движение ДНК-полимеразы. Сходную роль — помощь ДНК-полимеразе в преодолении препятствий , в частности шпилечных структур на матрице,— могут играть и другие дополнительные (в том числе и вирус-специфические) репликационные белки. [c.266]

    В числе продуктов ранних генов — фагоспецифическая РНК-полимераза, закодированная в гене 1. Это относительно простой фермент, который в отличие от бактериальной РНК-полимеразы содержит всего одну полипептидную цепь (Мг=107 ООО). Вирусный фермент узнает иной набор промоторов — поздние промоторы, которые имеют сходные между собой, но не идентичные первичные структуры. Поздние промоторы расположены преимущественно в поздней области фагового генома, но встречаются и в ранней, в частности они предшествуют участку оП, с которого начинается репликация вирусной ДНК. Поздние гены транскрибируются с разной эффективностью и в определенной последовательности. Не все механизмы этой регуляции расшифрованы, но некоторые из них достаточно понятны. В частности, в поздней области есть районы, которые организованы сходно с активно транскрибируемы. районом генома нитчатых фагов (см. с. 290) такие участки имеют несколько промоторов и ограничены общим сильным терминатором. Отсюда считывается набор молекул мРНК разных размеров, но с одинаковыми З -концами. Чем ближе ген примыкает к тер.минатору, тем чаще он представлен в таком наборе. мРНК- С другой стороны, есть участки ДНК, которые содержат общий промотор и несколько последовательно расположенных относительно слабых терминаторов, ко- [c.298]


    Репликация вироидной РНК происходит в ядре зараженной клетки вероятная схема этого процесса такова (рис. 174). Сначала на кольцевой +)матрице синтезируется комплементарная (—)цепь. Эгот синтез осуществляется клеточным ферментом в качестве одного из кандидатов рассматривают ДНК-зависимую РНК-полимеразу И. Возможно, расширению специфичности этого фермента, обычно использующего двухнитевую ДНК-матрицу, способствует то обстоятельство, чго вироидная РНК содержит необычно высокую (для однонитевых нуклеиновых кислот) долю элементов с вторичной структурой. Синтез идет, вероятно, по модели разматывающегося рулона (см. раздел 1 этой главы), и в результате появляются линейные олигомерные (—)нити. Затем происходит образование линейных олигомерных (+)нитей не ясно, используются ли при этом в качестве матрицы олигомеры (-)нитей или образовавшиеся из них кольцевые молекулы. Далее линейные (+)олигомеры превращаются в кольцевые мономерные молекулы — конечный продукт реплика- [c.330]

    Выбор соответствующей аминокислоты аминоацил-тРНК—синтетазой имеет чрезвычайно важное значение. Однако трудно представить себе активный центр, способный четко различать структуру двух таких похожих соединений, как изолейцин и валин. Одним из путей точного выбора аминокислоты мог бы служить кинетический механизм корректирования , аналогичный тому, который был описан для ДНК-полимеразы I (разд. Д,4). Действительно, было показано, что валин, ошибочно присоединенный к изолейциновой тРНК. подвергался под действием синтетазы быстрому гидролизу [114а], значительно уменьшая вероятность включения валина в белок в неправильном положении. [c.239]

    В основу одной из моделей рекомбинации были положены данные, полученные при изучении фагов к и Т4. Согласно этой модели, ген ехо -фага % (рис. 15-22) не нужен для репликации, но необходим для -общей рекомбинации. Продуктом этого гена является, как это было показано, 5 -3 -экзонуклеаза. Возможный механизм действия этого фермента в процессе рекомбинации показан на рис. 15-31. Процесс начи- нается действием эндонуклеазы, осуществляющей одноцепочечные разрывы в произвольных местах двухцепочечных молекул ДНК- Затем вступает в действие специальная экзонуклеаза, которая расширяет эти разрывы, превращает их в незаполненные промежутки. Оставшиеся при этом открытыми гомологические участки одних молекул будут стремиться присоединить комплементарные участки других молекул (рис. 15-31, стадия б) и образовывать Н-образные гетеродуплексные структуры. Перемещение точки ветвления (рис. 15-31, стадия в) приведет к удлинению гетеродуплексного участка и появлению короткой ветви. В случае реплицирующего фага Т4 были получены электронные микрофотографии [221] разветвленных молекул ДНК такого типа, JtaK показанные на рис. 15-29. В результате действия эндонуклеазы на разветвленные структуры (рис. 15-31, стадия г) будут образовываться надрезы . Любые одноцепочечные промежутки могут быть заполнены при помощи ДНК-полимеразы (рис. 15-31, стадия в), а разрывы могут быть сшиты полинуклеозид-лигазой. [c.282]

    Синтез. Биосинтез Б. происходит в результате трансляции в субклеточных частицах-рибосолшх, представляющих собой сложный рибо-нуклеопротеидный комплекс. Информация о первичной структуре Б. хранится в соответствующих генах-участках ДНК-в виде последовательности нуклеотидоа В процессе транскрипции эта информация с помощью фермента-ДНК-зависимой РНК-полимеразы - передается на матричную рибонуклеиновую к-ту, к-рая, соединяясь с рибосомой, служит матрицей для синтеза Б. Выходящие из рибосомы синтезированные полипептидные цепи, самопроизвольно сворачиваясь, принимают присущую данному Б. конформацию, а также подвергаются модификации благодаря р-циям разл. функциональных групп аминокислотных остатков и расщеплению пептидных связей (см. Модификация белков). [c.253]

    Наиб, интенсивно в 70-х гг, развивались синтез олигонуклеотидов и генов исследования клеточных мембран и полисахаридов анализ первичной и пространста структур белков. В кач-ве примера можно указать на успешное изучение структуры важных ферментов (трансаминаза, Р-га-лактозидаза, ДНК-зависимая РНК-полимераза), защитных белков (у-глобулины, интерфероны), мембранных белков (аденозинтрифосфатазы, бактериородопснн). Большое значение приобрели работы по изучению строения и механизма действия пептидов-регуляторов нервной деятельности (т, наз. нейропептиды). [c.288]

    Н.-мономерные звенья и промежут. продукты биосинтеза нуклеиновых кислот и нуклеотидкоферментов (см. Коферменты), участники мн. др. процессов в обмене в-в (см., напр., Аденозинфосфорные кислоты), исходные в-ва для хим. и хим.-ферментативного синтеза олиго- и полинуклеотидов. Они широко применяются в биол. исследованиях. Так, мн. нуклеозид-5 -трифосфаты, модифицированные по моносаха-ридному остатку (с заменой гидроксила в положении 3 на атом Н, др. атом или группу), включаются с помощью полимераз в цепь нуклеиновой к-ты, обрывая ее рост (терми-нация цепи). Благодаря этому такие Н. широко используют при выяснении первичной структуры нуклеиновых к-т (метод Сенгера). [c.305]

    Определены первичные структуры ДНК-полимеразы I из Е. oli, ДНК-полимеразы человека и крысы, ряда вирусных обратных транскриптаз и др. Гены нек-рых ДНК-полимераз клонированы и экспрессированы (встроены в генетич. аппарат) в Е. oli. Ингибиторы разл. ДНК-полимераз-гл. обр. аналоги 2 -дезоксинуклеозидов и 2 -дезоксинуклеотидов. Нек-рые из них (напр., З -азидо-З -дезокситимидин, или азидотимидин) применяют в противовирусной терапии, в т.ч. против СПИДа. [c.625]

    ДНК-полимераза имеет один центр связывания нуклеозидтрифосфата, общий для всех четырех нуклеотидов. Выбор Р13 среды нуклеотида, основание к-рого комплементарно очередному основанию матрицы, протекает без ошибок, блаюдаря определяющему влиянию ДНК-матрицы (исходно] цепи ДНК). При нек-рых мутационных повреждениях структуры ДНК-полимеразы в ряде случаев происходит включение некомплементарных нуклеотидов. [c.252]

    Связывание РНК-по]шмеразы с промотором включает по крайней мере два этапа. На первом РНК-полимераза образует с промотором закрытый комплекс, в к-ром ДНК сохраняет двухспиральную структуру, а РНК-полимераза еще не способна начать синтез РНК. На втором закрытый комплекс превращается в открытый, в к-ром РНК-полиме-раза расплетает примерно один виток двойной спирали ДНК в районе стартовой точки-нуклеотида, с к-рого начинается комплементарное когшрование матрицы. [c.619]

    Мн. терминаторы узнаются РНК-полимеразой только с помощью белковых факторов терминации. Из них наиб, изучен фактор р Е. oli-олигомерный белок с мол. м. 46 тыс. Фактор р присоединяется к определенным участкам синтезируемой РНК (не имеющим протяженных двухспиральных структур) до того, как РНК-полимераза достигает терминатора. Предполагается, что фактор р передвигается вдоль РНК вслед за РНК-полимеразой, используя для этого энергшо гидролиза нуклеозидтрифосфатов, и способствует диссоциации гибрида РНК с матричной нитью ДНК. [c.620]

    Биосинтез белков в клетках листьев зависит от экспрессии генетической информации трех различных геномов ядра, хлоропластов и митохондрий. Эта генетическая информация проявляется через три генетические системы, включающие ДНК, ДНК-полимеразу, РНК-полимеразу и аппарат белкового синтеза (рибосомы, транспортные РНК, ферментный набор...). Ядерные гены подчиняются закону двуродительского наследования, тогда как гены органелл имеют исключительно материнское наследование. Именно эти носители генетической информации с их собственными законами передачи определяют структуру и свойства белков листьев, а также содержание в них белков, липидов, волокон и т. п. Более подробные сведения о передаче и проявлении генетической информации в хлоропластах можно получить из литературных источников [25, 27, 1П , как и по тем же вопросам применительно к митохондриям [67]. [c.237]


Смотреть страницы где упоминается термин РНК Полимераза структура: [c.20]    [c.53]    [c.66]    [c.143]    [c.207]    [c.224]    [c.251]    [c.263]    [c.293]    [c.294]    [c.296]    [c.297]    [c.298]    [c.462]    [c.367]    [c.203]    [c.212]    [c.248]    [c.236]    [c.20]   
Общая органическая химия Т.10 (1986) -- [ c.203 ]




ПОИСК





Смотрите так же термины и статьи:

РНК-полимераза субъединица, структура

РНК-полимераза транскрипционная единица, структура

Структура генов и белков полимеразы



© 2025 chem21.info Реклама на сайте