Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Несколько центров связывания в одной молекуле

    Как известно, функция рибонуклеазы состоит в гидролитическом расщеплении рибонуклеиновых кислот и олигонуклеотидов. Как мы видели, это один из первых белков, изучавшихся с помощью ЯМР, хотя спектры, полученные на ранних стадиях, не обнаруживали характерных деталей. Рибонуклеаза близка по размеру (молекулярная масса 13700, 124 аминокислотных остатка) и форме к лизоциму и является удобным объектом для изучения методом ЯМР. В ее молекуле имеются 4 дисульфидных мостика, 18 остатков основных аминокислот (10 Лиз, 4 Apr и 4 Гис) и только 10 остатков кислых аминокислот (5 Глу и 5 Асп). Таким образом, в растворе при нейтральных pH молекула заряжена положительно. По сравнению с лизоцимом она содержит несколько меньше а-спиральных структур и больше -структур (остатки 42—49, 71—92 и 94—110). В дополнение к 4 Гис имеются также 6 Тир и 3 Фен, но нет остатков триптофана. Полная трехмерная структура рибонуклеазы известна из рентгеноструктурных исследований, проведенных двумя группами авторов [37, 38, 38а]. Форма ее глобулы близка к сферической имеется большая щель, в которой происходит связывание субстрата. С одной стороны этой щели расположены в непосредственной близости друг от друга остатки Гис-12, Гис-119 и Лиз-7, а с другой стороны находится Лиз-41. По данным подробных химических исследований все эти четыре остатка входят в активный центр. [c.363]


    Цитохромы, железо-серные центры и атомы меди способны переносить одновременно только один электрон. Между тем каждая молекула NADH отдает два электрона и каждая молекула О2 должна принять четыре электрона при образовании молекул воды. В электронтранспортной цепи имеется несколько электронсобирающих и электронраспределяющих участков, где согласовывается разница в числе электронов. Так, например, цитохромоксидазный комплекс принимает от молекул цитохрома с по отдельности четыре электрона и в конечном итоге передает их на одиу связанную молекулу О2, что ведет к образованию двух молекул воды. На промежуточных ступенях этого процесса два электрона, прежде чем перейти к участку, связывающему кислород, поступают в гем цитохрома а и связанный с белком атом меди, ua. В свою очередь участок связывания кислорода содержит еще один атом меди и гем цитохрома аз. Однако механизм образования двух молекул воды в результате взаимодействия связанной молекулы О2 с четырьмя протонами в точности не известен. [c.453]

    Отличительной особенностью ряда аллостерических ферментов является наличие в молекуле олигомерного фермента нескольких активных центров и нескольких аллостерических регуляторных центров, пространственно удаленных друг от друга. В аллостерическом ферменте каждый из двух симметрично построенных протомеров содержит один активный центр, связывающий субстрат 8, и один аллостерический центр, связывающий эффектор М т.е. 2 центра в одной молекуле фермента (рис. 4.4). Получены доказательства, что для субстрата аллостерические ферменты, помимо активного центра, содержат и так называемые эффекторные центры при связывании с эффекторным центром субстрат не подвергается каталитическому превращению, однако он влияет на каталитическую эффективность активного центра. Подобные взаимодействия между центрами, связывающими лиганды одного типа, принято называть гомотропными взаимодействиями, а взаимодействия между центрами, связывающими лиганды разных типов, —гетеротропными взаимодействиями. [c.126]

    Совокупность экспериментальных данных, теоретический анализ, аналогии с гемоглобином привели к построению модели, объясняющей механизм регуляции активности ферментов следующим образом. Молекула фермента состоит из нескольких одинаковых субъединиц, в каждой содержится один специфический центр для связывания различных типов молекул (частиц субстрата или химических регуляторов). Молекула белка, состоящая из определенного ограниченного числа единиц, всегда имеет ось симметрии. Полагают, что молекула фермента может быть в двух состояниях, сохраняя при каждом из них свою симметрию. Эти два состояния различаются по энергии связей между субъединицами в менее напряженном состоянии молекула фермента избирательно присоединяет активатор и субстрат, в более напряженном — ингибитор. Соединяясь с ферментом, данная разновидность молекул — субстрат, активатор или ингибитор — будет усиливать дальнейшее связывание молекул своей категории. При изменении относительных концентраций молекул субстрата или регуляторов равновесие может сдвигаться в ту или другую сторону. Так осуществляется взаимодействие (противоположно направленное или кооперативное) центров связывания в ферментной частице фермент реализует действие различных сигналов, переходя в одно из двух возможных равновесных состояний. [c.92]


    Этот процесс моделирует связывание малых молекул белками. Зависимость степени связывания от концентрации свидетельствует о том, что существует один связующий центр на приблизительно каждые 10 остатков пирро-лидона и свободная энергия связывания составляет от —1 до —2 ккал/моль (от —4,2 до -8,4 10 Дж/моль) на одно ароматическое кольцо, причем связывание несколько возрастает при введении полярных заместителей. Взаимодействие малой молекулы с полимером в основном осуществляется за счет положительного изменения энтропии, которого достаточно для того, чтобы скомпенсировать невыгодные изменения — положительное изменение энтальпии, наблюдавшееся для некоторых соединений, и отрицательное изменение энтропии, которым должны сопровождаться сжатие полимера и ассоциация. То, что полимер подвергается сжатию при связывании незаряженных малых молекул, следует из измерений светорассеяния и понижения вязкости. Это явление моделирует конформационные изменения в белках, происходящие при связывании малых молекул. [c.309]

    Измерение изотерм сорбции и десорбции воды позволило оценить число молекул воды в более прочно удерживаемом первом слое на поверхности белка. Оно составляет от нескольких десятков (лизоцим 45-64) до сотен (а-химотрипсин 72-103) молекул. Основными центрами первичной гидрации белка являются гетероатомы боковых полярных групп аминокислот и пептидные группы. Амидные группы и ионные пары не принимают такого активного участия в удержании гидратационной воды и представляют собой более слабые центры связывания. Среднее число молекул воды составляет в среднем четыре на один центр. [c.235]

    Гемоглобин же содержит четыре центра связывания, по одному в каждой из четырех субъединиц, причем все эти центры действуют кооперативно. Вспомним, что когда один центр связывания гемоглобина занят молекулой кислорода, у других центров связывания сродство к кислороду возрастает. Это проявляется в том, что после связывания первой молекулы кислорода кривая насьпцения гемоглобина кислородом резко идет вверх и принимает сигмоидную форму. Аналогичным образом гомотропный аллостерический фермент (рис. 9-21, А) имеет несколько центров связывания для своего субстрата, действующих кооперативно, так что связьшанне одной молекулы субстрата значительно облегчает присоединение к ферменту последующих молекул субстрата. Поэтому зависимость скоро-, сти ферментативной реакции от концентрации субстрата описывается сигмоидной, а не гиперболической кривой. [c.260]

    Некоторые ферменты ковалентно взаимодействуют с одним из своих субстратов. При этом субстрат связывается с аминокислотой или с молекулой кофермента. Такие ферментативные реакции часто происходят в несколько стадий так, что один субстрат захватывается центром связывания и ковалентно связывается, а затем реагирует на поверхности фермента со вторым субстратом (рис. 3-53). К концу каждого реакционного цикла свободный фермент восстанавливается. [c.158]

    Некоторые молекулы, например многие иммуноглобулины, представляют собой набор относительно жестких образований, соединенных между собой несколькими гибкими связями. По-видимому, гибкость, свойственная таким структурам, связана со специфической функциональной ролью молекулы. Каждая молекула иммуноглобулина С(ЛвО) имеет два центра связывания со специфическим антигеном (рис. 1.9). Если бы иммуноглобулин С был жесткой молекулой, он мог бы связывать два антигена, расположенных на поверхности или в объеме, лишь в том случае, когда их расположение точно отвечает геометрии этих двух центров. Если свободная энергия связывания в расчете на один центр равна ДС°, то кажущаяся макроскопическая константа связывания IgG с одним антигеном равна 2 ехр(— АС /ЕТ), где наличие множителя 2 обусловлено тем, что каждая ветвь lgG может специфически связаться с одним из антигенов. Однако, поскольку lgG обладает гибкостью, гораздо более вероятно, что после того как один из центров будет занят, второй тоже окажется занятым. Это — проявление хелатного эффекта . Хотя энтальпия связывания со вторым центром такая же, как и с первым, потеря энтропии гораздо меньше, так как второй центр уже зафиксирован вблизи антигена благодаря тому, что первый занят антигеном. А жесткий двухвалентный иммуноглобулин способен использовать хелат-ный эффект для увеличения сродства к антигену лишь при том условии, что его структура случайно допускает одновременное заполнение обоих центров связывания. [c.27]

    Аллостерические ферменты — белки с высокой молекулярной мас- сой, состоящие из нескольких субъединиц одного или разного типа. В первом случае каждая субъединица содержит каталитический и регуляторный (аллостерический) центры. Во втором —один субъединицы обладают каталитической активностью, другие выполняют регуляторную функцию. Таким образом, каталитический и регуляторный центры -в молекуле аллостерического фермента пространственно разобщены, но функционально они тесно взаимосвязаны. Каталитическая активность аллостерического фермента меняется в результате связывания с его регуляторным центром определенных метаболитов, называемых эффекторами, реже модуляторами, или модификаторами. Кроме конечных продуктов данного пути, эффекторами могут быть субстраты -ферментов, а также некоторые конечные продукты родственных метаболических путей. Если действие эффектора приводит к понижению каталитической активности фермента, такой эффектор называется от- рицательным, или ингибитором. Положительным называют эффектор,. действие которого повышает каталитическую активность фермента. [c.111]


    Может ли увеличиться специфичность при связывании с ферментом, имеющим несколько центров связывания, более чем одной молекулы субстрата Такая возможность не исключается для систем in vitro, когда присутствует только один субстрат и анализируется абсолютная скорость, а не различие между субстратами. Однако в реальных биологических системах, где имеются специфические и конкурирующие субстраты, специфичность увеличиваться не может, поскольку в реакции участвуют смешанные комплексы, содержащие фермент и оба субстрата. Это можно показать с помощью формальных термодинамических выкладок. Рассмотрим случай, когда реакционной способностью обладает половина активных центров, и одна молекула субстрата, S, связывается с ферментом, но не претерпевает химических превращений с образованием продукта в отличие от [c.333]

    Принципы действия энхансеров, способных оказывать свое влияние на значительном расстоянии (более чем тысячи нуклеотидных пар) и вне зависимости от ориентации по отношению к старту транскрипции, не выяснены. Короткие нуклеотидные блоки могут служить центрами связывания специфических ядерных белков, выступающих как транс-действующие факторы. Сила энхансера, вероятно, может зависеть от числа таких блоков (модулей). Обсуждаются следующие два основных механизма действия энхансеров. Считается, что функциональные участки генома, содержащие один или несколько генов, образуют длинные петли, включающие десятки тысяч нуклеотидных пар ДНК. Высказано представление, что петли закреплены в матриксе клеточного ядра и могут быть сверхспира-лизованы. В состав матрикса входит топоизомераза И, по-видимому, определяюш,ая топологию петли ДНК (см. гл. ХП), В таком случае взаимодействие энхансера с бе.1ками может менять конформацию всей петли, включая и удаленный от энхансера участок ДНК, в результате чего в составе петли изменяется локальная структура хроматина и облегчается транскрипция гена (рис. 112,6). Более вероятно, что влияние энхансера, связанного с белком, определяется его непосредственным взаи.чодействием с РНК-полимеразой и другими факторами транскрипции в процессе инициации- Такое взаимодействие может осуществляться благодаря сгибанию молекулы ДНК, что создает возможность непосредственного контакта районов промотора и удаленного от него энхансера, связанных со специфическими белками (рис. И2, в). [c.204]

    ВХОДИТ несколько молекул моновалентных антител, неизбежно ограничивает чувствительность определения до значений, характерных для конкурентных методов. Это обусловлено невозможностью отделения полностью свободных антител от би- или поливалентных антител, у которых хотя бы один из центров связывания остался свободным —и те, и другие будут связываться с сорбентом. В то же время в ряде случаев требования к чувствительности определения антигена таковы, что их вполне удается удовлетворить с использованием немономерных конъюгатов [фермент — моновалентные антитела], особенно при наличии антител с высоким сродством к антигену. В качестве примера можно отметить разработку на основе ИААК чувствительного (нижний предел обнаружения 0,2 нМ) и очень точного (коэффициент вариации меньше 3%) автоматизированного метода определения дигоксина (Leflar et al., 1984). В этом случае для детектирования использовали немономерный конъюгат типа [F(ab )s — р-галактозидаза]. [c.247]

    X42X38 А имеет почти сферическую форму и, следовательно, компактнее, чем было предсказано на основании величины f/fo, определенной из коэффициентов диффузии [45]. В непосредственной близости от атома цинка находится полость, которая оказалась участком связывания ароматической боковой цепи глицилтирозина (ср. рис. 15.6 и 15.8). Это углубление на поверхности молекулы хорошо просматривается даже на картах КПА с низким разрешением [46]. При высоком разрешении в этой полости видно несколько молекул воды. От атома цинка в сторону, противоположную ей, проходит выемка или канал, в который можно поместить ацилированные трипептиды (разд. 2.4.1). Из общего числа 307 остатков 115 входят в спиральные структуры, 45 — в протяженные р-струк-туры, а оставшиеся 147 — в структуры, которые можно назвать нерегулярными в том смысле, что они отличаются от типичных. В табл. 15.2 приведены типы вторичной структуры, которые наблюдаются при рассмотрении пептидной цепи. Все спиральные участки, за исключением трех сравнительно коротких (остатки 112— 122, 173—187 и 254—262), расположены в левой части молекулы, изображенной на рис. 15.3. Фактически ни один из них нельзя считать находящимся внутри молекулы. Центр КПА и одна из сторон активного центра образованы участком с искаженной Р-структурой, состоящим из восьми сегментов, которые расположены таким образом, что четыре пары цепей параллельны, а три антипараллельны (рис. 15.4). На рис. 15.3 участок с р-структурой расположен перпендикулярно плоскости листа, в результате чего [c.511]

    Предполагают, что для прочного связывания lq необходима определенная конформационная перестройка IgG. Это предположение базируется на том, что IgG в форме комплекса с антигеном, а также IgG, агрегированный иными способами (прогреванием при 63°С, сшивкой бифункциональными реагентами), прочно связывает lq. IgM прочно связывает lq также после его агрегации. Но это условие не является обязательным. Как убедительно показали Х.-Ч. Чианг и М. Кошланд (Н.— h. hiang, М. Koshland, 1979), даже комплекс IgM-антител с одновалентным гаптеном имеет высокое сродство к lq. Хотя агрегации IgM не происходит, наблюдаются вызванные гаптеном изменения конформации иммуноглобулина, в том числе F -участка молекулы. Все эти данные позволяют предполагать лишь, что связывание lq — кооперативный процесс, и прочная фиксация достигается скорее всего в случае соединения lq с иммуноглобулинами по нескольким точкам. Так как в молекуле IgG два центра для связывания lq, но стерически доступен, по-видимому, только один, для связывания lq по нескольким точкам необходимо сближение в пространстве нескольких эффекторных центров. Это достигается при агрегации IgG или его фиксации на нерастворимом носителе. В молекуле IgM пять доступных для lq центров. Поэтому кооперативный эффект при взаимодействии может быть достигнут даже при формировании эквимолекулярного комплекса, но при условии, что все центры для связывания lq в молекуле IgM будут располагаться в пространстве наиболее благоприятным образом для фиксации лиганда. Этому, очевидно, способствует гаптен, связывающийся с IgM-антителами. [c.136]

    Наличие обширной субстратсвязывающей области в активном центре пероксидазы создает условия для связывания сразу нескольким молекулам субстратов одинаковых или разных по строению, при возможности только одному из них участвовать в каталитическом процессе. Тогда как действие другого субстрата проявляется в регулировании (активировании или ингибировании) ферментативной реакции. При этом реализуется принцип один окисляется, а другой регулирует каталитический процесс. Причем разные по природе субстраты связываются в различных участках активного центра фермента или в области расположения регуляторного участка. [c.140]

    Возможность придания белку соверщенно нового типа ферментативной активности путем его химической модификации была реализована лищь в немногих случаях. Стратегия модификации здесь заключается в усилении слабой каталитической активности органической молекулы путем ковалентного связывания ее с белковой цепью, чтобы использовать способность последней связывать субстрат. Один из лучших примеров этого рода-флавопапаин [23]. Папаин представляет собой протеазу растительного происхождения, которая содержит каталитически активную тиольную группу. Обработка папаина бромоизоаллоксазинами приводит к ковалентному присоединению редокс-групп к тиолу [23], как показано на рис. 8.5. Модифицированный таким образом фермент теперь не проявляет протеолитической активности, но зато проявляет оксидазную. Производное папаина, полученное алкилированием цистеинового остатка активного центра, обладает слабой способностью к окислению дитиолов [18] и дигидроникотинамидов [26, 27]. Окисление дитиолов протекает лишь несколько более быстро по сравнению с самим изоаллоксазином обычно скорость реакции возрастала в 4-17 раз при значениях равных 4-21 М с"" [18]. Анализ молекулярных [c.110]

    Молекулы ЫА формируют на поверхности вирусной оболочки тетрамерные шипы. В отличие от тримеров НА, напоминающих колонну, тетрамер ЫА представляет собой небольшой стебель, увенчанный кубической головкой (рис. 24.13). Стебель формируют аминокислотные остатки с 36-го по 73-й, а головку образует остальная часть молекулы. Головки, отделенные от вириона путем протеолитического расщепления стебля, исследовали с помощью рентгеноструктурного анализа [69]. Оказалось, что внутри головки полипептидная цепь формирует несколько витков, образующих шесть четырехцепочечных р-слоев. Каталитический центр нейраминидазы расположен на поверхности головки в каждой из субъединиц, поэтому тетрамер имеет четыре активных центра, подобно тому, как каждый тример гемагглютинина имеет три участка связывания рецептора. В головке расположены также все сайты гликозилирования ЫА, причем один из них, по-видимому, участвует во взаимодействии между мономерами. Изме- [c.472]


Смотреть страницы где упоминается термин Несколько центров связывания в одной молекуле: [c.151]    [c.151]    [c.431]    [c.205]    [c.234]    [c.25]    [c.112]    [c.71]    [c.453]   
Смотреть главы в:

Биохимия ТОМ 1 -> Несколько центров связывания в одной молекуле




ПОИСК





Смотрите так же термины и статьи:

Связывание



© 2025 chem21.info Реклама на сайте