Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стереохимия циклогексановых соединений

    Обратимся теперь к важной шестичленной циклической системе — циклогексану и его производным. Конформационное поведение и стереохимия таких соединений были изучены очень подробно, значительно лучше, чем для любой другой циклической системы [21]. Циклогексановые структуры найдены во многих классах природных соединений анализ циклогексановой системы привел к развитию и установлению важных зависимостей между структурой и энергией в органической химии. Циклогексан и его производные являются особенно подходящими объектами для детального конформационного анализа. Они характеризуются обычно небольшим числом энергетических минимумов, и наиболее устойчивые конформации разделяются более высокими и более легко измеряемыми энергетическими барьерами, чем энергетические барьеры в других циклических системах. [c.83]


    Экспериментальный конформационный анализ превосходно изложен в монографии [И]. Благодаря тому, что циклогексан и его производные стали традиционными объектами классической стереохимии, конформациям этих соединений посвящена значительная часть цитируемой монографии. Поэтому в следующих главах основное внимание будет уделено теории конформационного анализа, а также конформациям сложных молекул — макромолекул и биополимеров. Проблемы структурной химии (строение молекул) выдвинуты на первый план менее детально, однако с акцентом на теоретический аспект, изложены проблемы динамической стереохимии (им посвящена гл. 5). [c.19]

    Одним из первых успехов только что нарождавшейся стереохимии Циклических соединений явилось создание теории напряжения Байера, успешно и красиво объяснившей неустойчивость циклопропана и циклобутана и высокую стабильность соединений ряда цикло-пентана. Байер обратил внимание на то, что в трехчленных и четырехчленных кольцах по очевидным геометрическим причинам валентные углы углерода (109°28 ) должны уменьшиться до 60 и 90°, соответственно, создавая в результате значительное напряжение молекул. Наоборот, в пятичленном кольце циклопентана по той же причине углы почти точно соответствуют валентному углу. Однако дальнейшее развитие теории встретилось с неожиданными трудностями. Плоские, по представлениям Байера, кольца циклогексана, циклогептана и т. д. должны были бы характеризоваться растущим с увеличением кольца напряжением, но оказалось, что они весьма устойчивы. Особенно устойчивыми оказались циклогексан и его производные, а также синтезированные Ружичкой соединения с числом атомов С в цикле от 15 до нескольких десятков. По теории напряжения существование таких соединений вообще считалось невозможным. Правда, в дальнейшем Заксе и Мор показали, что циклогексан может быть свободен от байеровското напряжения, если его атомы углерода расположены не в плоскости, а в пространстве. Они предложили две такие пространственные модели, получившие названия кресла XI и ванны, или лодки, XII. Казалось бы, эти формы совершенно равноценны и должны отвечать двум изомерным цик-логексанам, которые, возможно, трудно или совсем неразделимы. Однако в дальнейшем различными физическими методами (с помощью спектров комбинационного рассеяния [571, ИК-спектроскопин [c.37]

    По аналогии с циклогексаном можно было бы ожидать преобладания диэкваториальной формы ХПа, однако исследования методом ЯМР показали, что в конформационном равновесии в действительности преобладает форма ХПб. Это, по-видимому, является результатом диполь-дипольного отталкивания, родственного аномерному эффекту в ряду тетра-гидропиранов (см. стр. 542), Изучалась и стереохимия реакций соединений подобного типа, например исследовалось [20] [c.609]


    Настоящий перелом в конформационном анализе циклогексана и его производных произошел в 1950 г. после опубликования работы Дерека Бартона, посвященной исследованию зависимости между конформацией сложных циклических молекул и их реакционной способностью. Бартон указал на одну возможность тонкой изомерии в кресловидной форме , которая заключается в том, что в циклогексане возможны два тина связей С—Н-аксиальные и экваториальные соответствующие им заместители различаются в химическом поведении. Эти идеи Бартона, работы Прелога по макроциклическим соединениям и исследования Ривса по углеводам послужили мощным толчком развития конформациониого анализа и дальнейшего развития стереохимии органических соединений. [c.4]

    Стереохимия соединений, полученных из диенов с открытой цепью и циклических диенофилов, также часто определяется правилом максимального накопления двойных связей. Аддукт диэтилового эфира транс-транс-мукоповой кислоты с малеиновым ангидридом при гид щровании с последующим омылением переходит в циклогексан- [c.560]

    ЮТСЯ более стабильные изомеры [320]. К сожалению, полученные данные не имеют общего характера п их интерпретация, приведенная выше, является весьма упрощенной. В частности, стереохими-ческие результаты реакции восстановления а,р-ненасыщенных карбонильных соединений системой металл — донор протонов сильно зависят как от характера этой системы, так и от условий реакции. Так, восстановление циклогексилиденуксусной кислоты, изображенной на рис. 2-56, в соответствующую циклогексан-уксусную кислоту системой калий — изопропиловый спирт — жидкий аммиак приводит исключительно к соединению с кислотной боковой цепью в р-положении (экваториальном), если гидроксильная группа при С-4 занимает а-положение (аксиальное). Однако, если при С-4 находится р-гидроксил (экваториальный), образуется соединение с а-боковой цепью (аксиальной) [321]. Кроме того, в том случае, когда восстанавливают соединение с a-4-гидроксильной группой, содержание продукта с р-конфигу-рацией боковой цепи в продуктах реакции изменяется от 100% для системы калий — изопропиловый спирт — жидкий аммиак до соотношения 4 3 в пользу а-боковой цепи при переходе к системе литий — жидкий аммиак (в присутствии или в отсутствие изопропилового спирта) [321]. Более того, показано, что при восстаповлепии некоторыми системами образуется менее стабильный изомер. Так, ири восстановлении 7-метокси-5-метил-д1(1о) окталона-2 (рис. 2-57) системой литий — этиловый спирт — жидкий аммиак образуются только производные гракс-декали-па [322]. В данном случае вследствие диаксиального взаимодействия СНз-СНзО в траке-декалоновых соединениях соответствующие производные г кс-декалина должны быть более стабильными, и тем не менее последние не образуются. Предполагалось [322], что стереохимия восстановления в данном случае определяется требованием наличия перекрывания орбитали пары электронов образующегося карбаниона с л-орбнталями карбонильной группы. Для этого необходимо, чтобы орбиталь карбаниона была аксиальной, а не экваториальной. Последнее приводит к конечному продукту реакции с тракс-сочленением колец. Следует отметить, что упомянутое выше утверждение, согласно которому свободная пара электронов занимает аксиальное положение, не оспаривается, однако предполагается, что причиной этого является скорее перекрывание орбиталей, чем пространственные требования свободной пары электронов. Очевидно, что этот новый аргумент непосредственно неприменим к стереохимии карбанионов, в которых отсутствует перекрывание орбиталей свободной пары электронов и карбонильной двойной связи. [c.151]

    Термин циклит используют для описания нолиоксицикло-гексанов, среди которых наиболее важную группу образуют инозиты. Для изучения стереохимии и конформационных эффектов инозиты являются особенно подходящими модельными соединениями они образуют единственную группу циклогексанов, замещенных при каждом углеродном атоме, в которой известен любой из возможных диастереомеров более того, гидроксильные группы, будучи реакционноспособными, позволяют проводить большое число разнообразных реакций. На основании принципов конформационного анализа для каждого изомера легко предсказать наиболее устойчивую конформацию таковой является форма кресла, обладающая меньшим числом аксиальных гидроксильных групп. Конформации изомеров и их название (приставки, добавляемые в каждом случае к слову инозит) приведены на рис. 6-1. Аналогичное рассмотрение применимо к конформациям других циклитов. [c.420]

    Вследствие постоянного и длительного интереса к стереохимии реакций замещения органических хлоридов следующий этап представлял собой синтез оптически активных кремнийорганических хлоридов с целью выяснения стереохимии реакций замещения этого важного класса кремнийорганических соединений и сравнения ее со стереохимией аналогичных реакций органических хлоридов. Из имеющихся данных по реакциям кремнийорганических гидридов с хлором [6] и иодом [7] следует, что эти реакции протекают скорее по гетеролитическому, чем по гомолитическому механизму. Последнее обстоятельство давало возможность стереоспецифичного хлорирования оптически активного Нз51 Н. Реакция этого соединения с хлором быстро протекает как при освещении, так и в темноте, причем имеется заметная зависимость скорости реакции от природы растворителя. По данным Рассела [6], реакция протекает быстро в четыреххлористом углероде и значительно медленнее в циклогексане. [c.47]


    Стереохимия замещенных 1,3-диоксанов подробно исследована Э. Или-елом (см. обзор [48]). Эти циклические ацетали удобно получать из карбонильных соединений и 1,3-диолов, их спектры ЯМР легко поддаются расшифровке. В кислой среде устанавливается термодинамическое равновесие между экваториальной и аксиальной формами (схема 39). В отличие от замещенных циклогексанов эти формы переходят друг в Друга не в результате инверсии кресла, а путем изомеризации с раскрытием и новым образованием ацетильного цикла. Речь идет о цис-транс-изоме-рах, однако положение равновесия между ними определяется конформационной энергией заместителя Н. [c.383]


Смотреть страницы где упоминается термин Стереохимия циклогексановых соединений: [c.537]    [c.329]    [c.147]    [c.68]    [c.161]    [c.139]    [c.153]   
Смотреть главы в:

Основы стереохимии -> Стереохимия циклогексановых соединений




ПОИСК





Смотрите так же термины и статьи:

Стереохимия

Стереохимия соединениям

Циклогексан



© 2025 chem21.info Реклама на сайте