Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конформационные изменения определяющие скорость

    По изменению и усреднению констант спин-спинового взаимодействия, которые определяются временем жизни различных конформаций, можно определять скорость конформационных переходов, скорость внутреннего вращения. [c.321]

    Изменение формы молекул под влиянием теплового движения (или под действием внешнего поля), не сопровождающееся разрывом химических связей, называют конформационным превращением, сами же формы молекулы — конформациями. Переход макромолекулы из конформации, которой соответствует потенциальная энергия в конформацию, которой соответствует потенциальная энергия осуществляется не мгновенно, а с определенной скоростью, которая зависит от взаимодействия соседних Атомных групп. Для преодоления этого взаимодействия требуется некоторая энергия активации АН, равная — (рис. II.3). Следовательно, гибкость (или жесткость) макромолекулы, т. е. способность ее к конформационным превращениям, определяется значением потенциального барьера внутреннего вращения Иными словами, потенциальный барьер внутреннего вращения он ределяет скорость конформационных превращений. Чем больше значение потенциального барьера внутреннего вращения макромолекул отличается от энергии внешнего воздействия (теплового механического) на полимер, тем медленнее осуществляются по". [c.20]


    Важнейшая особенность белковой цепи, определяющая существование необратимых флуктуаций и, следовательно, возможность спонтанного возникновения высокоорганизованной структуры из хаоса, заключена в специфической конформационной неоднородности природной аминокислотной последовательности. Можно утверждать, что суть рассматриваемого явления состоит в наличии четкой взаимообусловленности между химическим строением, конформационными свойствами и необратимыми флуктуациями. Гетерогенность аминокислотной последовательности ответственна за различие в конформационных возможностях ее отдельных участков, что, в свою очередь порождает термодинамическую неоднородность флуктуаций, дифференциацию их на обратимые равновесные и необратимые неравновесные. Сочетание последних и порядок их следования определяют содержание и направленность механизма быстрой и безошибочной самосборки белковой цепи. Отмеченная связь присуща только эволюционно отобранным аминокислотным последовательностям. В случае же гомогенных, регулярных или даже гетерогенных синтетических полипептидов со случайным порядком аминокислот тот же беспорядочный по своему характеру процесс не имеет развития и не выводит цепь из состояния статистического клубка. Сказанного, однако, недостаточно для объяснения высокой скорости сборки трехмерной структуры белка при его биосинтезе или ренатурации. Чтобы беспорядочно-поисковый механизм мог действительно привести к свертыванию цепи, селекция бифуркационных флуктуаций не должна представлять собой перебор возможных комбинаций всех случайных изменений целой полипептидной цепи, количество которых невероятно велико, и сборка структуры даже такого низкомолекулярного белка, как БПТИ, должна была бы продолжаться не менее 10 ° лет. [c.474]

    Рассмотрим конкретный пример, где использовался шумовой анализ. Работу ионного канала могут регулировать различные параметры его проводимость ограничивается либо скоростью, с которой молекула медиатора (в случае постсинаптического канала) диффундирует от рецептора или деградирует, либо реакцией канала на сигнал. В настоящее время принято считать, что конформационные изменения мембранных белков обусловливают изменение проницаемости в мембране нерва. С помощью шумового анализа было показано, что в случае постсинаптического ацетилхолинового рецептора закрывание канала в большей степени, чем удаление и гидролиз ацетилхолина, определяет продолжительность тока через концевую пластинку. [c.127]


    Конформационные превращения — основа развития высокоэластических деформаций. Однако деформация в значительной степени зависит также от плотности флуктуационной сетки, которая в свою очередь определяется скоростью деформации. С изменением плотности флуктуационной сетки меняется эффективная длина участков цепей между соседними микроблоками или зацеплениями. При сдвиговом течении вследствие различия скоростей перемещения отдельных слоев жидкости внешнее усилие в виде напряжения сдвига передается через проходные участки макромолекул, в результате чего они начинают ориентироваться. Под действием этих же сил путем последовательного движения звенья цепи выходят из микроблоков, т. е. узлы флуктуационной сетки разрушаются и увеличивается средняя длина проходных участков, которые являются основным источником накопления мгновенной упругой и высокоэластической деформации. Разрушение узлов флуктуационной сетки измеряется числом элементарных переходов звеньев из одного положения в другое, следовательно, этот процесс протекает во времени. Поэтому чем больше плотность флуктуационной сетки в начале развития деформации, тем больше время запаздывания и наоборот при переходе от ориентированного состояния к равновесному время релаксации меняется в зависимости от степени ориентации цепи и способности макромолекул к образованию новых узлов флуктуационной сетки. Поскольку все конформационные переходы макромолекул взаимосвязаны, они зависят от межмолекулярного взаимодействия и гибкости цепи, а следовательно, в значительной степени определяются температурой. С изменением температуры весь релаксационный спектр смещается и деформируется. [c.57]

    Густая полимерная сетка, в которой невозможна даже ограниченная смена конформаций продольных цепей, заключенных между соседними узлами, не способна к набуханию и непроницаема. В ограниченно эластичных сетках сохраняется флуктуация плотностей вследствие непрерывных конформационных изменений участков продольных цепей между узлами. Это способствует диффузии молекул растворителя внутрь полимера. Чем интенсивнее смена конформаций, т. е. чем большей гибкостью наделены структурные элементы сетки, тем выше скорость диффузии молекул растворителя в полимерной фазе. По мере того как возрастает количество растворителя в полимере, уменьшается число физических узлов в полимерной сетке, а следовательно, и ее жесткость и плотность упаковки. Продольные цени приобретают большую свободу движений, объем полимера возрастает, а вместе с этим и проницаемость его для малых молекул. При одном и том же числе химических узлов равновесное набухание сетки, а следовательно, и ее проницаемость, определяются типом растворителя, т. е. силой взаимодействия его с полярными группами звеньев полимера. В набухшей сетке полимера молекулы низкомолекулярных вещ еств, растворенных в растворителе, продвигаются по тем микроканалам (или микропорам), которые возникли в ней в данных конкретных условиях взаимодействия полимер—растворитель—растворенное вещество. Малейшие изменения в этой системе приводят к изменению числа физических узлов сетки и степени гибкости ее продольных цепей, что влечет за собой и изменение в размерах микропор. [c.10]

    Процесс облегченной диффузии можно объясни гь с помощью механизма пинг-понг (рис. 42.16). Согласно этой модели, белок-переносчик может находиться в двух основных конформациях. В состоянии понг он экспонирован в раствор с высокой концентрацией вещества, и молекулы последнего могут связываться со специфическими участками. В результате конформационных изменений в белке участки связывания вместе с переносимым веществом экспонируются в раствор с низкой его концентрацией (состояние пинг ). Этот процесс полностью обратим, и суммарный поток вещества через мембрану определяется его концентрационным градиентом. Скорость, с которой растворенное вещество поступает в клетку, зависит от следующих факторов 1) трансмембранного концентрационного градиента 2) количества переносчика (ключ к регуляции) 3) быстроты связывания вещества с переносчиком 4) быстроты конформационных изменений нагруженного и ненагруженного переносчика. [c.141]

    Итак, мы хотим построить макроскопический двигатель, работающий за счет энергии, выделяющейся в ходе катализируемой в самом двигателе реакции. Ясно., что его размеры, размеры такого ансамбля макромолекул должны быть ограничены условиями диффузии. Синхронность конформационных изменений отдельных макромолекул фермента в ансамбле будет определяться отнюдь не только условиями синхронизации в ходе взаимодействия генераторов. Необходимо, чтобы она не нарушалась вследствие различия в доступе субстрата ко всем макромолекулам фермента в ансамбле. Для конформационных колебаний с частотой порядка 1 кгц время образования фермент-субстратно-го комплекса не должно превышать 10 и даже 10 сек, для колебаний с частотой порядка 10 кгц оно порядка Ю - сек. Следовательно, при учете скорости диффузии размеры двигательного ансамбля макромолекул должны быть порядка 100— 1000 А. По-видимому, можно найти оптимальные соотношения между частотой конформационных колебаний в ходе ферментативных актов и размерами ансамбля макромолекул, обеспечивающего макроскопические перемещения. Более эффективным [c.176]


    Были определены все константы скорости этого механизма и изучены спектральные свойства промежуточных соединений. Реакция включает образование первичного комплекса Х , за которым следует конформационное изменение (X <- X,) и образование альдимина Х . [c.182]

    ИЛИ совсем не обмениваться. В тех случаях, когда атомы водорода участвуют в водородных связях или находятся в гидрофобных областях вне контакта с растворителем, их нормальная скорость Обмена снижается. Для определения скорости обмена дейтерированный белок растворяют в Н2О и через определенные интервалы времени измеряют плотность растворителя, которая зависит от относительного содержания дейтерия. Можно также использовать в подобных экспериментах радиоактивный тритий или определять скорость обмена по уменьшению интенсивности амидной полосы поглощения в инфракрасной области при 1550 м , которое наблюдается при растворении белка в D2O. Последний способ является наиболее удобным. Определение скорости изотопного обмена можно производить и по другим полосам поглощения в инфракрасной области, а также с помощью магнитного ядерного резонанса. В случае малых полипептидов для этой цели можно использовать спектры комбинационного рассеяния. Следует учесть, что эти методы приводят к правильному результату только в тех случаях, когда изотопное замещение не вызывает изменения конформации белка. Например, для нормальной рибонуклеазы температура перехода в воде при pH 4,3 равна 62°, а для дейтерированной, растворенной в D2O, она равна 66°. Таким образом, дейтерирование способствует сохранению спиральной конформации. Поэтому при анализе экспериментов по изотопному обмену, проводимых при 65°, необходимо учитывать изменение относительного содержания фракций белка, имеющих различную конформацию. Во избежание подобных осложнений следует проводить опыты в условиях, исключающих возможность конформационных переходов. [c.295]

    Механизм ферментативной реакции можно считать полно стью установленным, если охарактеризованы все промежуточные соединения, комплексы и конформационные состояния фермента и определены константы скорости их взаимопревращений. Таким образом, задача исследователя состоит в установлении числа и последовательности промежуточных соединений и процессов, выяснении их природы (т. е. в установлении, образуются ли промежуточные соединения с ковалентными связями или имеют место конформационные изменения), в измерении констант скорости и (исходя из анализа их рН-зависимости) в определении степени участия в катализе кислых и основных групп. Исследователь должен установить химическую природу промежуточных соединений, выяснить, в ходе каких превращений они образуются и распадаются, и определить тип катализа. Все эти результаты вместе с данными рентгеноструктурного анализа и теоретическими расчетами позволят полностью описать механизм данной реакции. [c.211]

    Конформациями называются различные пространственные формы иона или молекулы, возникающие в результате вращения групп атомов вокруг некоторых связей, изменения длин связей и т. д. Например, при вращении лиганда вокруг ординарной связи металл— лиганд конформация определяется углом поворота 0<ф< <360°. Из-за того, что другие лиганды мешают такому вращению, конформации энергетически неравноценны. Если на зависимости энергии конформации от ф имеется более одного минимума, то совокупность конформаций в окрестности каждого из них рассматривают как конформационный изомер (конформер). Разделяющий конформеры энергетический барьер близок по смыслу к энергии активации Еа) процесса изомеризации. Когда Еа мала, взаимопревращения изомеров идут с большой скоростью ( почти свободное вращение ). [c.166]

    Эффективное понижение времени поперечной релаксации происходит в том случае, если рассматриваемые ядра периодически изменяют свои ларморовы частоты. Это явление представляет большой интерес для химии, так как для различных внутри-и межмолекулярных динамических процессов, таких, как протонный обмен, конформационные переходы (валентная таутомерия), могут происходить быстрые и обратимые изменения резонансных частот отдельных протонов. В том случае, если этот механизм целиком определяет поперечную релаксацию, то из температурно-зависимых величин Гг, которые связаны с ширинами линий (уравнение VII. 9), можно определить значения скоростей реакций. Таким образом, с помощью спектроскопии ЯМР могут исследоваться кинетические процессы, и этот метод играет важную роль в исследовании быстрых обратимых реакций. [c.241]

    Именно наличие выделенных механических степеней свободы позволяет рассматривать смещения, происходящие в разных областях макромолекулы, как изменения, совершающиеся в один акт. Энергия, сосредоточенная на этих медленно релаксирующих степенях свободы, не диссипирует быстро в теплоту за счет размена по другим обычным степеням свободы, что используется фактически для обеспечения направленного характера релаксационных процессов в ферментативном катализе. С такой нетрадиционной точки зрения, теряет непосредственный смысл использование понятий энергии и энтропии активации, как это делают в теории активированного комплекса. Зависимость скорости ферментативной реакции от температуры определяется не числом активных молекул с энергией, достаточной для преодоления барьера, а влиянием температуры на конформацию макромолекулы и, следовательно, на путь и скорость ее последующей релаксации (см. 2, гл. УП). Все молекулы субстрата, образовавшие правильный комплекс с ферментом, претерпевают химическое превращение в результате самопроизвольной релаксации фермента к новому конформационному состоянию. Конечно, с термодинамической точки зрения, общей движущей силой процесса является разность химических потенциалов субстрата и продукта. Однако она определяет лишь число встреч молекул фермента и суб- [c.426]

    Этому вопросу были посвящены исследования Л. А. Блюмен- фельда с сотр. По Л. А. Блюменфельду, молекула фермента-белка до начала взаимодействия с субстратом находится в конформаци-онно равновесном состоянии. В активном центре белковая молекула становится неравновесной для соединения фермент — субстрат и элементарный акт ферментативной реакции и заключается в конформационном изменении макромолекул фермент-субстратного комплекса, причем скорость этого изменения определяет и скорость превращения субстрата в продукт реакции. [c.325]

    Обратите внимание, что константа, характеризующая равновесие между АХ и ВХ, является функцией трех других констант, а именно KiKbx/Ka x.- Теперь рассмотрим следующую ситуацию. Предположим, что в отсутствие X преобладает А, однако X более прочно связывается с В, чем с А. Тогда в равновесной смеси будут преимущественно присутствовать или свободный А, или ВХ (в меньших количествах будут находиться также АХ и В). Возникает интересный с точки зрения кинетики вопрос по какому из двух возможных путей будет протекать реакция перехода от А к ВХ [уравнение (44)] Первый вариант, рассматриваемый в модели Моно—Уаймена—Шанжё, предполагает, что X связывается только с В, небольшое количество которого присутствует в смеси в равновесии с А. Согласно второму варианту, X связывается с А, но АХ затем быстро переходит в ВХ. Можно сказать, что X вызывает (индуцирует) конформационное изменение в белке А, облегчающее состыковку . Именно на этом основана концепция Кошланда, известная под названием концепции индуцированного соответствия. Следует иметь в виду, что, зная константы равновесия, можно определить только равновесные концентрации всех четырех форм, присутствующих в уравнении (4-44). Однако при изучении метаболизма нас чаще интересуют скорости тех или иных реакций, а не равновесное состояние, а исходя только из данных для равновесной системы, а priori нельзя сказать, по какому из двух возможных путей будет реально протекать данная реакция. [c.298]

    Блюменфельд и Чернавскни (1973) обобщили эту модель применительно к любым ферментативным реакциям. Формулируется постулат, согласно которому конформациопное изменение субстратферментного комплекса, следующее за присоединением субстрата к активному центру фермента, включает в себя кроме разрыва старых и образования новых вторичных связей в макромолекуле белка также химические изменения субстрата. Элементарный акт ферментативной реакции заключается в конформа-ционном изменении макромолекулы (фермент-субстратного комплекса, ФСК), и скорость превращения субстрат—продукт определяется скоростью этого конформационного изменения. Можно представить каталитический разрыв связи А — В субстрата последовательностью четырех стадий  [c.440]

    Как уже указывалось, образование адсорбционных межфазных слоев белков представляет собой комплексный процесс. Нативные молекулы (белки) диффундируют к поверхности, адсорбируются, претерпевают конформационные изменения и создают новые межфазные структуры. При высоких концентрациях белка в растворе диффузия велика и скорость образования прочных межфазных слоев определяется стадиями адсорбции, изменением конформационных состояний макромолекулы и образованием большого числа пековалентных межмолекулярных связей, обусловливающих прочность возникающих межфазных структур. [c.212]

    Все это показывает, как широко используется ультрацентрифугирование при изучении нуклеиновых кислот и биосинтеза белка. Ультрацентрифугирование незаменимо также при все более расширяющемся изучении смежных проблем — в частности при изучении механизмов регуляции ферментативных реакций. Метаболические потребности клетки удовлетворяются, как известно, благодаря тонкой согласованности скоростей различных биохимических последовательностей. Такая согласованность возможна благодаря чувствительности аллостерических ферментов к изменениям концентраций отдельных метаболитов, что в свою очередь зависит от конформационных изменений, вызываемых соответствующим метаболитом и, очевидно, передающихся путем взаимодействия субъединиц ферментного белка. Успехи, достигнутые в изучении свойств аллостериче-ского фермента — аспартат-карбамоилтрансферазы, хорошо иллюстрируют большое значение ультрацентрифугирования — особенно когда оно используется в сочетании с другими методами анализа. Так, Герхарт и Шахман [5] показали, что этот фермент, представляющий собой глобулярный белок с молекулярной массой около 3-10 , после обработки соединениями ртути распадается на субъединицы двух типов. Каталитической активностью обладают лишь субъединицы одного типа, в субъединицах же другого типа, не обладающих каталитической активностью, находится центр по которому происходит присоединение цитидинтрифосфата. С этой регуляторной субъединицей связывается 5-бромцитидин-трифосфат, о чем свидетельствует соответствующая картина седиментации. Позже Вебер [6] определил аминокислотный состав и Ы-концевые остатки субъединиц обоих типов и установил, что одна молекула фермента содержит четыре регуляторных и четыре каталитических субъединицы. [c.9]

    Есть и другие основания для недовольства липидной теорией в ее классическом виде. В соответствии с ней температурные характеристики липидов (как и (Коллагенов) организма легко адаптируются к температуре среды обитания вида. А мы ищем инвариант — непреодолимые по физико-химическим соображениям обстоятельства, делающие температурный интервал 36—40° универсальной оптимальной зоной условий существования наиболее совершенных животных. Такой системой, свойства которой не подгоняются к температуре существования, а, в известном смысле, определяют ее, являются, по моему мнению, не вообще липиды, а липопротеидные комплексы возбудимых мембран. Состав и свойства предельно совершенных возбудимых мембран клетки жестко детерминированы их главными функциями — способностью к созданию асимметричного распределения ионов и к проведению волны возбуждения. Волны структурной перестройки, волны конформационных изменений в мембране, обеспечивающие проведение возбуждения, с наибольшей легкостью осуществляются именно в зоне равной вероятности двух состояний, т. е. в зоне фазового перехода. Следовательно, скорость расдространениявозбуждения будет наибольшей при температурах и при других условиях, соответствующих зоне фазового перехода. Эта скорость резко падает при температурах, меньших и больших оптимальной. [c.213]

    Из соотнощения (23.53) можно определить мольную долю динуклеотилов со стэкингом Xs и затем найти константу равновесия для образования стэкинга в основном состоянии, = х,/(1 — Xs) = 9. Если бы константы скоростей для образования стэкинга в основном и возбужденном состояниях совпадали, то константа скорости разрушения стэкинга была бы равна А 5 = к /К = 1,9- 10 с . Тогда время релаксации, которое получалось бы в результате исследований метолом температурного скачка или каким-либо аналогичным методом (гл. 16), составило бы т = (к + к ) = 5,3 не. Это значительно меньше тех значений, которые обычно наблюдаются в релаксационных экспериментах. Следовательно, мы вполне можем пренебречь временем образования одноцепочечного стэкинга при анализе кинетики других конформационных изменений в нуклеиновых кислотах. Лимитирующие процессы или релаксационные процессы, наблюдаемые в двухцепочечных системах, должны соответствовать другим элементарным актам. [c.335]

    Рассмотрим два примера. Первый пример — исследование связывания лиганда ферментом в ходе иекатализируемой реакции. При этом могут произойти два физических события связывание и индуцируемое лигандом конформационное изменение фермента. Чтобы установить число промежуточных стадий и определить соответствующие им константы скорости, прежде всего необходимо определить число времен релаксации и найти их концентрационную зависимость. В идеальном случае число времен релаксации будет равно числу стадий данной реакции. Если найдено даже одно время релаксации и его концентрационная зависимость нелинейна, это может означать, что процесс протекает в две стадии [например, уравнения (4.71) и (4.74)], Далее стоит воспользоваться несколькими физическими методами (например, исследовать флуоресценцию и поглощение лиганда и белка), поскольку некоторые стадии могут быть выявлены только с помощью одного из этих методов. В ходе рассматриваемой реакции могут протекать и другие физические процессы, например отдача или присоединение протона или изменение степени агрегации белка. В первом случае весьма полезен еще один метод — измерение pH, для чего можно использовать просто цветные индикаторы. Агрегация осложняет кинетические исследования, однако ее можно обнаружить и количественно охарактеризовать, что также даст дополнительную информацию. Для исследования простых реакций релаксационные методы часто оказываются эффективнее струевых, поскольку позволяют изучать более быстрые процессы. Однако иногда метод остановленной струи более ценен, например, при исследовании процессов, слишком медленных, чтобы применять метод температурного скачка. Кроме того, некоторые эксперименты (такие, как исследование влияния сильных изменений pH) можно осуществить только в том случае, если использовать методы, включающие быстрое смешивание реагентов (хотя небольшого изменения pH можно добиться, применив метод темпера- [c.151]

    Предстационарная кинетика обладает рядом преимуществ с практической точки зрения. Она имеет дело с очень простыми по сути процессами например, с ее помощью определяют стехиометрию процесса, в ходе которого происходит всплеск концентрации продукта, находят константы скорости переноса связанных с ферментом промежуточных соединений на второй субстрат или исследуют индуцируемые лигандами конформационные изменения в белках. Кроме того, характеристики процессов первого порядка (которые обычно изучают) не зависят от концентрации фермента в отличие от констант скорости, измеряемых в стационарной кинетике. Для исследования быстрых реакций требуются очень высокие концентрации ферментов, но их значения близки к концентрациям in vivo. Более того, аналогичные концентрации обычно используются при прямом определении физического состояния белка, что позволяет получать, например, данные об агрегации в условиях, при которых протекает реакция. [c.212]

    Даже при таких малых деформациях кажущийся модуль Юнга зависит от скорости деформирования. Это указывает, что Е неоднозначно определяется энергией упругого деформирования угловых связей в цепях, длиной связей и межмолеку-лярными расстояниями, но, кроме этого, характеризуется чувствительностью ко времени смещений атомов и небольших атомных групп. В следующей области деформации (1—5%) напряжение и деформация уже не пропорциональны друг другу. Здесь происходят структурные и конформационные перестройки, которые обратимы механически, но не термодинамически. В этом случае говорят о неупругом (вязкоупругом в узком смысле), или параупругом, поведении. За пределом вынужденной эластичности начинается сильная переориентация цепей и ламеллярных кристаллов, а сам процесс обычно носит название пластическое деформирование . Под чисто пластическим деформированием можно понимать переход от одного равновесного состояния к другому без внутренних напряжений. Последнее особенно важно в связи с тем, что следующая после предела вынужденной эластичности деформация связана главным образом с механически обратимыми неупругими конфор-мационными изменениями молекул, а не с их перемещением друг за другом. До тех пор пока не достигнуто состояние равновесия с помощью соответствующей термообработки, сильно вытянутые образцы могут в значительной степени возвращаться в исходное состояние после снятия напряжения. Исходя из содержания настоящей книги, основное внимание следует уделять не процессам, вызывающим или сопровождающим молекулярную переориентацию (которая в основном понимается как эффект упрочнения), а процессам повреждения, т. е. разрыва цепи, образования пустот и течения. Последние процессы постепенно нарастают в области деформаций сразу же за пределом вынужденной эластичности вплоть до окончательного разрушения. К числу процессов, вызывающих повреждения, следует также отнести явление вынужденной эластичности при растяжении или образование трещины серебра в стеклообразных полимерах, которые будут рассмотрены в гл. 9. [c.38]

    Характер изменения степени кристалличности микрофибрилл с вытяжкой обусловлен, по-видимому, строением межкристаллитных аморфных прослоек, которое зависит от молекулярной массы полимера, химической структуры его молекул и термодинамических условий перекристаллизации полимера в момент формирования микрофибрилл в микрошейках. Кроме того, существенное влияние на изменение продольных размеров кристаллических и аморфных участков должна оказывать температура и скорость вытяжки, поскольку возможность конформационных переходов в аморфных областях определяется подвижностью цепей и межмолекулярным взаимодействием. Следует отметить, что чаще всего 4 и /ooi изменяются только по достижении больших степеней удлинения, а в довольно широком диапазоне вытяжек их размеры остаются постоянными. [c.215]

    Итак, согласно релаксационной концепции, скорость химического превращения субстрата в продукт определяется, как правило, скоростью конформационной релаксации. Температурная зависимость скорости обусловлена не изменениями числа молекул субстрата, способных преодолевать активационный барьер, а изменениями конструкции фермент-субстратного комплекса, которые влияют на путь и, следовательно, на скорость конформационной релаксации. Из приведенного анализа можно сделать еще один важный вывод прямой и обратный пути реакции, катализируемые ферментом, могут существенно отличаться. Это означает, что релаксационная схема может быть реализована только вне термодинамического равновесия системы субстрат-продукг. Другими словами, если фермент работает как механическая машина, то механизмы реакции вблизи термодинамического равновесия и вдали от него должны различаться. [c.70]

    Изменяя условия комплексообразования в фазе ионита, можно регулировать участие в образовании координационных центров лигандных групп одной цени (внутрицепной комплекс) или разных цепей (межцеп-ной комплекс) полимера [17]. Образование межцепных комплексов сопровождается изменением конформационного набора трехмерного полилиганда, которое проходит с небольшой скоростью. Это определяет непостоянство во времени состава среднестатистического координационного центра и устойчивости полимерного комплекса. Период формирования координационных центров постоянного состава зависит от условий синтеза полимерного комплекса, в частности от соотношения [КЬ] [М], а также от гибкости полимерной матрицы ионита. [c.257]

    В заключение этого раздела следует подчеркнуть, что закономерности комплексообразования с участием трехмерных полилигандов в большинстве случаев определяются действием ряда эффектов. Так, по мере заполнения ионита ионами металла устойчивость полимерного комплекса уменьшается, увеличивается стехиометрическая дефектность по лигандным группам полимера и уменьшается скорость процесса комплексообразования. Это обусловлено действием нескольких факторов. Во-первых, с увеличением содержания ионов металла в фазе ионита изменение конформационного набора для образования необходимых структур затрудняется вследствие вовлечения в первую координационную сферу иона металла лигандных групп различных цепей (полимерная матрица становится более жесткой — конформационные эффекты). Во-вторых, электронодонорные свойства незакомплексованных лигандных групп с увеличением степени заполнения полимера ионами металла уменьшаются (эффект соседа ). В-третьих, с уменьшением концентрации электронодонорных групп ноннт проявляет себя как более слабый полилиганд (концентрационный эффект). И, наконец, металлсодержащие иониты набухают меньше исходных, что определяет снижение скорости процесса комплексообразования с увеличением степени заполнения полимера ионами металла (диффузионный эффект). [c.259]

    Следует сказать, что энтальпии атомизации (образования, изомеризации) весьма чувствительны к параметрам атом-атом потенциалов. Если для равновесных конформаций существенна скорость изменения отталкивания атомов с увеличением расстояния между ними (действительно, условие равновесия определяется обращением в нуль первых производных), то на термохимических свойствах больше сказываются абсолютные значения энергии. Поэтому неудивительно, что атом-атом потенциалы, удовлетворительно предсказывающие структуру молекул, могут давать не согласующиеся с опытом термохимические оценки. Именно это обстоятельство побудило Аллинджера [26] пересмотреть эмпирические параметры, использовавшиеся ранее в конформационных расчетах 28]. [c.230]

    Увеличение вязкости в поле продольного градиента скорости (трутоновская вязкость Я) и уменьшение эффективной вязкости (т]) в поле поперечного градиента скорости обусловлено не различием в направлении поля скоростей, а совершенно другими причинами. Расплавы полимеров представляют собой систему, состоящую из надмолекулярных образований (агрегаты, пачки) и макромолекул или отрезков макромолекул, не входящих в состав пачек. Свойства расплавов (растворов) определяются размерами, продолжительностью жизни и прочностью связей макромолекул в пачке, а также гибкостью цепных макромолекул. Изменение конформации макромолекул и размеров агрегатов под влиянием напряжений обусловливает двойственную природу расплава полимеров. В результате разрушения пачек проис.ходит уменьшение вязкости, а выпрямление макромолекул и обеднение конформационного набора вызывают увеличение вязкости системы. В зависимости от величины приложенного напряжения преимущественно может протекать тот или иной процесс, и, как следствие этого, вязкость расплавов может изменяться по-разному. [c.132]

    В настоящее время интенсивно разрабатываются физические модели внутримолекулярной подвижности белка, где учитываются его особые свойства, отличающиеся от свойств твердого тела и жидкости. Так в модели ограниченной диффузии, показано, что связь функциональной активности и конформационной динамики белка определяется характером релаксационных процессов по внутримолекулярным и конформационным координатам с существенно разными скоростями. Задача состоит в том, чтобы найти принципы корреляции локальных и микроконформа-ционных изменений, приводящих в конечном итоге к детерминированным внутримолекулярным конформационным сдвигам, которые имеют вполне определенный функционально-биологический смысл. [c.11]

    Как будет показано ниже (см. гл. ХХУП), характер распространения и тушения возбуждения в фотосинтетической светособираюш ей матрице в ряде случаев суш е-ственно зависит от температуры. Как правило, в биологических объектах характер влияния температуры на процесс миграции энергии, в основном, определяется зависимостью конформационного состояния белкового носителя от температуры. С температурой меняется расстояние и взаимная ориентация фиксированных на белке хромофорных групп, которые непосредственно передают энергию возбуждения (молекулы хлорофилла в фотосинтетической мембране, ароматических аминокислот в белке). При этом происходит изменение характера (энергии) взаимодействия хромофорных групп. С температурой меняется и характер релаксационного процесса в белке, который непосредственно влияет на соотношение скоростей колебательной релаксации и миграции энергии электронного возбуждения. Эти факторы в совокупности могут менять также и самый механизм миграции электронного возбуждения. [c.407]

    I от с константой скорости 2 х). Величина И г(ж) определяется по формуле (XIII.5.10) неупругого туннелирования, а стохастическое движение по координате х описывается уравнением Фоккера - Планка (см. (XIII.11.1)). Времена корреляции Тс для конформационных движений много больше времен колебательной релаксации высокочастотных внутримолекулярных мод, определяемых шириной Г колебательных подуровней (тс 1/Г). Иными словами, процесс безызлучательного переноса электрона в белках характеризуется двумя уровнями организации. Это, во-первых, электронно-колебательные взаимодействия и изменения непосредственно внутри донорно-акцепторного контактного комплекса, а во-вторых, электронно-конфор-мационные взаимодействия, охватывающие уже окружение реагирующих групп [c.409]

    Воз1южность подобной адаптации обусловлена зависимостью термодинамических, химических, кинетических констант от Температуры. Эта зависимость, в общем, определяет направление и скорость химических реакций, конформационных переходов биологических ма1фомолекул,фазовых переходов липидов, изменения проницаемости мембран и других процессов, функционирование которых обеспеч1шает жизнедеятельность организмов при повышенной температуре. [c.5]


Смотреть страницы где упоминается термин Конформационные изменения определяющие скорость: [c.228]    [c.251]    [c.205]    [c.134]    [c.426]    [c.240]    [c.469]    [c.245]    [c.44]    [c.474]    [c.418]    [c.366]    [c.469]    [c.441]   
Катализ в химии и энзимологии (1972) -- [ c.49 ]




ПОИСК





Смотрите так же термины и статьи:

Конформационные

Скорость изменение



© 2025 chem21.info Реклама на сайте