Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамика систем вдали от равновесия (нелинейная термодинамика)

    Существенно отметить, что нелинейная термодинамика коренным образом изменяет статус второго начала термодинамики. Действительно, оказывается, что при необратимых процессах вдали от равновесия открытой системы этот закон определяет не только необходимость разрушения старых структур, но и возмож- [c.350]

    Принципиально важным следствием критерия Гленсдорфа— Пригожина (18.5) является возможность возникновения упорядоченных структур при протекании необратимых процессов в откры-ть[х системах вдали от равновесия в нелинейной для термодинамики области. Эти структуры, возникающие при превышении некоторыми параметрами системы определенных критических значений, Пригожин назвал диссипативными структурами. Существуют пространственные, временные и пространственно-временные диссипативные структуры. Некоторые из них будут рассмотрены в разд. 18.6. [c.357]


    Структурная организация биосистем молекулярного уровня. Дж. Холдейн в 1935 г. утверждал "Активное поддержание нормальной и притом специфической структуры и есть то, что мы называем жизнью понять сущность этого процесса - значит понять, что такое жизнь" [46. С. 24]. В решении проблемы об особой структурной организации живого и установлении элементарного уровня этой организации определяющую роль, как и в решении многих других проблем, в частности рассмотренных в предшествующих разделах, играют два, уже не раз отмечавшихся события. Одно из них - становление молекулярной биологии, которая сделала возможным постановку проблемы применительно к простейшей и самой фундаментальной биологической системе (молекулярной). Второе событие - создание теоретических основ изучения неравновесных процессов, спонтанно протекающих в открытых системах вдали от положения равновесия. Появление нелинейной неравновесной термодинамики сняло казавшееся принципиальным противоречие с вопроса о противоположной направленности физической и биологической эволюционных концепций и открыло путь к строгому описанию конкретных механизмов самопроизвольного возникновения порядка из хаоса. Было доказано, что основные положения этой области знаний справедливы для трактовки процессов самоорганизации, протекающих как в биологических системах, так и в открытых неорганических системах, физических и химических. [c.49]

    Отсутствие серьезного прогресса вплоть до начала 1980-х годов можно было объяснить неразработанностью теоретических основ изучения процессов структурообразования, протекающих в открытых системах вдали от положения равновесия речь идет о целой области естественнонаучных знаний - нелинейной неравновесной термодинамики или физики статистико-детерминистических процессов. Немалую роль, по-видимому, играл и психологический барьер, возникающий всякий раз при встрече с уникальным, не имеющим аналогий и, следовательно, требующим нетрадиционного подхода, явлением, каким, безусловно, является спонтанное возникновение трехмерной структуры белка. Подход, до последнего времени используемый в изучении механизма свертывания, имеет следующие характерные черты принципиального порядка. [c.82]

    В системах, находящихся вблизи равновесия, главными становятся результаты, полученные с помощью соотношений Онзагера в области энергетического сопряжения. В системах, находящихся вдали от равновесия, термодинамика сталкивается с проблемой поиска критериев эволюции и устойчивости стационарных состояний. В этой области термодинамика уже целиком основана на исходных математических моделях и ее результаты могут служить лишь дополнительной иллюстрацией для понимания особенностей динамического поведения открытых систем. Это в полной мере относится к автоколебательным процессам, триггерному переключению системы из одного режима в другой и, наконец, к процессам самоорганизации. Все эти вопросы включены в разделы, посвященные проблемам нелинейной термодинамики. [c.119]


    По характеру зависимости между потоками и силами неравновесная термодинамика делится на две части линейную и нелинейную. Первая изучает неравновесные процессы и состояния, удовлетворяющие линейным уравнениям движения, что обычно имеет место вблизи положения равновесия при небольших градиентах интенсивных параметров системы. Нелинейная термодинамика относится к неравновесным процессам и состояниям, которые находятся вдали от положения равновесия, характеризуются значительными градиентами и описываются более сложными соотношениями. Л. Онсагер сформулировал постулат, названный принципом симметрии кинетических коэффициентов L j), или соотношением взаимности, который позволяет существенно упростить матрицу коэффициентов и тем самым облегчить задачу нахождения последних. Принцип Онсагера утверждает равенство недиагональных кинетических коэффициентов при соответствующем выборе потоков и термодинамических сил в линейных соотношениях, т.е. L j = Lj . Эти равенства, обоснованные Онсагером с помощью статистической теории, предполагают, что неравновесные системы наделены следующим свойством если на поток 1 соответствующий необратимому -му процессу, влияет термодинамическая сила Х , то на поток сила Х, оказывает воздействие с тем же пере- [c.444]

    Поведение систем в нелинейной области имеет ряд принципиальных отличий в сравнении с областью, где действуют линейные соотношения. Во-первых, в системе перестают быть справедливыми соотношения взаимности Онсагера, появляется анизотропия св-в, даже еслн в равновесном состоянии система изотропна. Во-вторых, в то время как равновесные состояния и стационарные состояния вблизи равновесия описываются в терминах экстремумов нек-рых термодинамич. потенциалов, то в областях, сильно удаленных от равновесия, таких потенциалов найти не удается. В-третьих, если вблизи равновесия описание систем в термодинамике проводится через статистич. средине физ. величины, а флуктуации характеризуют спонтанные отклонения от средних, то вдали от равновесия уже флуктуации определяют значения средних. [c.539]

    Перечень достижений естествознания XX в. фундаментальной важности был бы неполным без еще одного эпохального события, которое произошло совсем недавно - в конце 70-начале 80-х годов. Речь идет о возникновении нелинейной неравновесной термодинамики, или физики открытых систем. Ее становление обязано прежде всего И.Р. Пригожи-ну, разработавшему теорию динамических состояний макроскопических систем особого типа - диссипативных самоорганизующихся структур -и теорию бифуркаций, дифференцирующую беспорядочные флуктуации на обратимые (равновесные) и необратимые (неравновесные). Они составили основу для изучения явлений, суть которых определяется неразрывной связью макроскопических свойств большого ансамбля с индивидуальными свойствами микроскопических составляющих. В открытых системах, находящихся вдали от положения равновесия, могут протекать процессы, приводящие к спонтанному возникновению порядка из хаоса. Источником самопроизвольного конструирования пространственного и пространственно-временного порядка на всех уровнях структурной организации системы является необратимость бифуркационных флуктуаций. [c.10]

    Обратимся теперь к развитой Пригожиным в 1970-1980-е годы нелинейной термодинамике неравновесных процессов, важнейшими составными частями которой являются теории диссипативных систем и бифуркаций. На первый взгляд может показаться, что рассмотренные на ее основе системы существенно отличаются от выбранной системы структурной организации белков. Конвекционные ячейки Бенара, когерентное излучение лазера, турбулентное движение жидкости, реакция Белоусова-Жаботинского, модель Лотке-Вольтерра, описывающая взаимоотношения между "хищником и жертвой", - все это открытые диссипативные структуры. Динамические процессы перечисленных и подобных им неравновесных макроскопических систем, действительно, приводят при достижении условий, превышающих соответствующий критический уровень, к спонтанному возникновению из беспорядка высокоорганизованных пространственных, пространственно-временны х и просто временных структур. Однако во всех случаях поддерживание возникшего из хаоса порядка в стационарном режиме оказывается возможным только при постоянном энергетическом и/или материальном обмене между окружающей средой и динамической системой. Совершающийся в такой открытой системе неравновесный процесс вдали от положения равновесия связан с диссипацией, т.е. с производством энтропии, или, иными словами, с компенсируюпщм это производство потреблением негэнтропии из окружающей среды. Перекрытие внешнего потока негэнтропии автоматически приводит к прекращению системой производства энтропии и, как следствие, распаду созданной диссипацией структуры. У открытых диссипативных систем аттрактором является не равновесное состояние, а расположенное далеко от него состояние текущего равновесия. [c.462]

    Примеры будут рассмотрены в гл. 8 и 13. Были предприняты попытки проанализировать также эти процессы с позиций неравновесной термодинамики [4]. Эти попытки основаны на предположении, что наблюдаемая линейность представляет собой термодинамическую линейность, т. е. линейную зависимость потоков от термодинамических сил при плавном приближении к равновесию. Термодинамическая линейность отличается от того, что можно назвать кинетической линейностью, т. е. областью приблизительной линейности, узкой или широкой, проявляющейся благодаря некоторой, обычно нелинейной, кинетической схеме (примеры рассматриваются в гл. 13). При наблюдении кинетической линейности для системы вдали от равновесия может возникнуть мысль о наличии также и термодинамической линейности (или квазитермодинамической линейности, которая обсуждается ниже). Априори нельзя с уверенностью утверждать или отрицать такую возможность, но для некоторых систем это можно экспериментально проверить. Если термодинамическая линейность действительно присутствует, то измерения в удаленных от равновесия состояниях отражают свойства соответствующих околоравновесных состояний, к которым они могут быть проэкстраполированы, даже когда такие состояния не реализуются на практике. [c.89]


    Были развипы следующие мегоды неравновесной термодинамики метод термодинамических функций Ляпунова (вблизи и вдали от равновесия), вариационный принцип минимума производства энтропии, анализ производства энтропии дпя определения движущих сил и закономерностей в кристаллизации. Движущие силы кристаллизации помимо разности химических потенциалов содержат также энтальпийную составляющую, характеризующую тепловую неравновесность системы. Рассмотрена роль этих вкладов для систем с высокими тепловыми эффеетами при кристаллизации, например, ортофосфорной кислоты Анализ производства энтропии системы с фазовыми превращениями позволил подтвердить распределение Хлопина для макрокомпонента и примеси (случай полного термодинамического равновесия), получить новые закономерности (и проверить их на ряде систем) для распределения компонентов при частичном равновесии. На основе вариационного принципа минимума производства энтропии определены закономерности для стационарных форм роста кристаллов, предельного пересыщения и т.д. Используя метод избыточного производства энтропии нашли новый класс осцилляторов, роль которых могут играть процессы кристаллизации, протекающие за счет химической реакции Используя кластерную теорию пересыщенных растворов, методы нелинейной динамики, было создано математическое описание, учитывающее колебания (в том числе и на термодинамической ветви) в кристаллизации, определены причины их возникновения. Разработаны алгоритмы управления (с обратной связью и без неё) хаотическими колебаниями в системах с кристаллизацией [c.21]


Смотреть страницы где упоминается термин Термодинамика систем вдали от равновесия (нелинейная термодинамика): [c.281]    [c.25]   
Смотреть главы в:

Биофизика Т.1 -> Термодинамика систем вдали от равновесия (нелинейная термодинамика)




ПОИСК





Смотрите так же термины и статьи:

Равновесие системе

Система нелинейная



© 2024 chem21.info Реклама на сайте