Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрическая коррозия кабелей

    Электрическая коррозия кабелей [c.261]

    Для обеспечения долговечности заземляющих устройств необходимо также правильно проводить монтаж. Например, при засыпке траншей однородным, тщательно утрамбованным грунтом коррозия заземлителя меньше, а срок службы больше, чем заземлителя, уложенного в грунт, содержащий щебень и строительный мусор. При использовании поваренной соли или хлористого кальция для искусственной обработки грунта с целью улучшения проводимости заземляющего устройства коррозия усиливается. Если кабель нельзя удалить от заземлителя хотя бы на 1 м, то электрическую оболочку кабеля следует соединить с заземлителем. [c.42]


    В пояснительной записке даются указания по защите кабелей от механических повреждений, защите от грунтовой и электрической коррозии, способы устройства переходов через водные препятствия, железные дороги и автомагистрали. [c.38]

Рис. 8-3. Электрическая коррозия свинцовой оболочки кабеля. Рис. 8-3. Электрическая <a href="/info/1290141">коррозия свинцовой оболочки</a> кабеля.
    Основные принципы электрической защиты кабелей от коррозии [c.263]

    Достаточная механическая прочность ПВХ пластиката позволяет широко применять кабели в оболочке без защитных покровов (не распространяет горения, влаго-и маслостоек, стоек к электрической и химической коррозии). Кабели в такой оболочке просты в производстве и удобны в монтаже. [c.62]

    Многие металлические конструкции, такие, как нефтепроводы, газопроводы, водопроводы, канализационные сети, обсадные трубы скважин, силовые электрические кабели, кабели связи, баки и емкости, тюбинги метро, сваи и другие строительные конструкции, эксплуатируются в подземных условиях и, соприкасаясь с почвой (верхним слоем горных пород) или грунтом (нижележащими горными породами), подвергаются коррозионному разрушению. Особо сильное разрушение наблюдается у подземных сооружений, находящихся в зоне действия блуждающих токов. Приближенные подсчеты показывают, что вследствие коррозии в нашей стране ежегодно выходит из строя 2—3% подземных сооружений, что составляет около одного миллиона тонн металла. [c.384]

    Источниками блуждающих постоянных токов обычно являются пути электропоездов, заземления линий постоянного тока, установки для электросварки, системы катодной защиты и установки для нанесения гальванических покрытий. Источники блуждающих переменных токов — это обычно заземления линий переменного тока или токи, индуцированные в трубопроводах проложенными рядом электрическими кабелями. Пример возникновения блуждающего постоянного тока от трамвайной линии, где стальные рельсы используются для возвращения тока к генераторной станции, показан на рис. 11.1. Вследствие плохого контакта рельсов на стыках и недостаточной изоляции их от земли часть тока выходит в почву и находит пути с низким сопротивлением, например подземные газо- и водопроводы. В точке А труба попадает под воздействие катодной защиты и не подвергается коррозии, а в точке В, напротив, сильно корродирует, так как по отношению к рельсам является анодом. Если в точке В труба защищена неметаллическим покрытием, это усугубляет коррозионные разрушения, так как в этом случае все блуждающие токи выходят через дефекты в покрытии трубы, что вызывает увеличение плот-, ности тока на ограниченных участках поверхности и ускоряет разрушение трубы. [c.210]


    Большую роль в коррозии подземных сооружений играет блуждающий электрический ток. Его источниками являются установки, работающие на постоянном токе электросварочные аппараты, трамваи, метро, электрифицированные железные дороги и т. д. Расположенные поблизости трубопроводы и кабели подвергаются особенно энергичному разрушению. Механизм действия блуждающего тока показан на рис. 69. От положительного полюса по воздушному проводу ток поступает в мотор и возвращается по рельсам к отрицательному полюсу источника. Из-за неоднородности рельсовых путей (например, стыки на них) при прохождении тока возникают [c.226]

    Почвенная коррозия угрожает трубопроводам, оболочкам кабелей II всем подземным сооружениям. В этом случае металл соприкасается с влагой почвы, содержащей кислород. Особенно коррозионно активны почвы с высокой влажностью, низкими значениями pH и хорошей электрической проводимостью (болотистые и торфянистые). В таких условиях трубопроводы разрушаются в течение полугода после их укладки, если не принять мер защиты. [c.252]

    Электрохимическая коррозия возникает на трубопроводах и электрических кабелях а почве под действием блуждающих токов. Такие токи появляются в почве при работе электрифицированного транспорта (электропоезда, трамваи, метро), электросварочных аппаратов и т. д. Коррозия усиливается под действием агрессивных веществ, находящихся в почве в растворенном состоянии, — солей, кислот. [c.403]

    Из всех электрических величин, характеризующих блуждающие токи, только плотность тока утечки указывает на опасность электрокоррозии, а остальные величины лишь косвенно определяют опасность коррозии. Величина тока утечки с подземного трубопровода (кабеля) зависит от следующих факторов  [c.71]

    Дубровский Б. Г. Схема защиты кабелей от коррозии. Электрические станции , Ni 4, 1969. [c.85]

    Анодные заземлители с наложением тока от внешнего источника должны быть размещены электрически изолировано от защищаемой поверхности. Места подвода тока к заземлителю тоже необходимо тщательно изолировать, потому что иначе концы кабеля подвергнутся коррозии и разрушатся. [c.206]

    Блуждающим называется ток, стекающий с токоведущих проводов электрических установок в окружающий грунт (среду [1]) где-либо в другом месте этот ток должен вернуться к электрическому генератору, которым он был выработан. Этот ток может быть постоянным или переменным, преимущественно с частотой 50 Гц (коммунальное электроснабжение) или 16 % Гц (электрическая тяга железных дорог). На своем пути в грунте блуждающий ток может натекать на металлические проводники, например на трубопроводы и оболочки кабелей. Постоянный ток при стекании с этих проводников в окружающую среду вызывает анодную коррозию (см. раздел 2.2 и рис. 2.5). Аналогичным образом и переменный ток во время анодной фазы тоже вызывает анодную коррозию. Поскольку электрическая емкость границы раздела материал — среда обычно бывает довольно большой, анодная коррозия существенно зависит от частоты, и при частотах 16 % или 50 Гц обычно наблюдается только при очень высоких нлотностях тока [2—5]. В общем случае отношение коррозионный ток/переменный ток зависит также и от среды и вида металла, причем сталь, свинец и алюминий ведут себя ио-разному. Опыты по изучению коррозии [6] в грунте, вызываемой переменным током с эффективной плотностью /е/ =10 А-м при частоте 50 Гц, показали, что в стали переменный ток вызывает лишь незначительную коррозию — примерно до 0,5 % ее интенсивности нри постоянном токе, в свинце — до нескольких процентов и в алюминии до 20 % интенсивности коррозии от постоянного тока. Таким образом, на практике коррозия, вызываемая переменным током, не может быть полностью исключена, в особенности на алюминии. Однако в случае свинца и стали при плотностях тока, обычно встречающихся в практических условиях, масштабы ее развития должны быть незначительными. Чаще всего коррозионные повреждения, как показали более тщательные исследования, были вызваны не переменным током, а явились следствием образования коррозионного элемента (см. раздел 4). В настоящем разделе рассматривается только коррозия блуждающими токами от установок постоянного тока. [c.314]

    Почти на всех электрифицированных железных дорогах с тягой на постоянном токе для возвращения рабочего тока к генератору (тяговой подстанции) используют ходовые рельсы. Ходовые рельсы укладывают на деревянных или бетонных шпалах, и на железных дорогах на поверхности они имеют более или менее хорошее электрическое соединение с грунтом. Грунт является электрическим проводником ионов, подключенным параллельно ходовым рельсам. Железнодорожную сеть следует считать заземленной на всей ее длине. Эти обстоятельства и связанная с ними опасность коррозии были выявлены уже давно (см. раздел 1.4). При соответствующем строительном исполнении и надлежащем контроле блуждающие токи от железных дорог можно уменьшить. Требуемые для этого мероприятия изложены в нормативных документах [1, 8], а также в рекомендациях Объединения предприятий общественного транспорта [9. Однако поскольку полностью избежать блуждающих токов нельзя, целесообразно, а в ряде случаев даже необходимо проводить дополнительные мероприятия по защите трубопроводов и кабелей. Важнейшими предпосылками для уменьшения блуждающих токов являются  [c.316]


    Полимерные материалы представляют значительный интерес для морской технологии, так как могут быть использованы для изготовления оболочек кабелей подводных линий связи, швартовых тросов, уплотнений, прокладок и различных деталей конструкций. Полимеры сочетают хорошие электрические свойства с высокой стойкостью к общему разрушению и коррозии в воде, а также к разрушающему воздействию биологических факторов. Для получения общей информации о поведении полимерных материалов в океанских средах и для изучения их эксплуатационных свойств был проведен ряд продолжительных натурных испытаний. [c.459]

    Водоотталкивающие свойства метилсиликоновой пасты препятствуют распространению влаги по электропроводам и коротким замыканиям в условиях очень высокой влажности, поэтому такие пасты применимы на больших высотах, где легко может происходить конденсация (например, в авиации) и на море. Она служит в качестве вспомогательного диэлектрика [Т13, Т59], защитной смазки для кабелей с каучуковой изоляцией, препятствует затвердеванию изоляции от окисления воздухом и действия малых концентраций хлора, брома и других реагентов, исключает опасность коронирования (тихий разряд) на больших высотах одновременно паста предотвращает коррозию металлических материалов, особенно магния и алюминия. Благодаря этим преимуществам она применяется в электрическом оборудовании двигателей внутреннего сгорания. Применение пасты предотвращает короткое замыкание под влиянием влаги на катодных трубках и придает тропикоустойчивость радиоприемникам. Метилсиликоновая паста, наполненная аэрогелем двуокиси кремния, пригодна в качестве диэлектрика для трансформаторов, рентгеновских аппаратов и другого электротехнического оборудования, конденсаторов, катушек, коаксиальных кабелей, для шахтного оборудования, работающего в чрезвычайно тяжелых [c.352]

    Поскольку объединяемые при совместной защите сооружения отличаются друг от друга не только по электрическим параметрам, состоянию и наличию изоляции, но и могут быть выполнены из разнородных металлов, как это имеет место при совместной защите трубопроводов и кабелей связи, установка прямых перемычек недопустима. Это объясняется тем, что в случае выхода из строя защитного устройства (дренажа) может возникнуть обмен блуждающими или гальваническими токами между кабелем и трубопроводом, в результате чего кабель будет подвергаться интенсивной коррозии. Чтобы устранить это явление, в каждую перемычку устанавливают вентильное устройство (блок), которое обеспечивает протекание дренируемого тока только в одном направлении, а именно, с кабеля в трубопровод, т. е. с сооружения более чувствительного к коррозионным процессам и менее подверженного затеканию блуждающих токов в сооружение менее чувствительное. [c.268]

    На современном этапе борьбы с коррозией остро встал вопрос об устранении коррозии подземных сооружений. Это связано с тем, что в нашей стране создается одно из крупнейших подземных хозяйств в мире. Это — нефтепроводы, газопроводы, водопроводы, канализационные сети, обсадные трубы скважин, силовые электрические кабели, кабели связи, баки и емкости, самые разнообразные строительные конструкции. [c.3]

    Хлоропрен производится из дешевого сырья — ацетилена и хлористого водорода. Хлоропреновый каучук прекрасно клеится, маслостоек, прочен, не окисляется даже в озоне. С успехом используется в химической промышленности для изготовления электрических кабелей и защитной одежды. Из него делают оболочки аэростатов и маслостойкие уплотнения. Применяется для защиты от коррозии и механических повреждений свинцовой оболочки подземных и морских кабелей. [c.324]

    Одним из наиболее эффективных способов защиты металлических подземных сооружений от коррозии, вызываемой блуждающими токами, является электрическое дренирование. Подземное сооружение соединяется дренажным кабелем с источником блуждающих токов — рельсами электротранспорта. При этом ток протекает через кабель, а не через границу раздела сооружение— земля. Дренажные устройства устанавливают в местах возможного появления анодных зон на подземном сооружении. Применяются простые, поляризованные (с односторонней [c.197]

    В связи с ростом энерговооруженности промышленных предприятий и значительным увеличением потребления электрической энергии населением городов и сел страны с каждым годом увеличивается протяжевность кабельных распределительных электрических сетей. Металлические оболочки н броня кабелей, проложенных в земле, а в некоторых случаях и в каналах, подвергаются коррозионному разрушению под воздействием окружающей среды и блуждающих токов. Нарушение герметичности оболочек приводит к электрическому лробою кабелей и сказывается на нормальном электроснабжении потребителей. В связи с этим требуется проведение комплекса мероприятий для предотвращения этих повреждений. Для правильной оценки значения борьбы с коррозией силовых электрических кабелей необходимо иметь в виду следующие данные. [c.4]

    Стандартный метод [345], используемый в США, применим к маслам нефтяного происхождения для использования в кабелях, трансформаторах, автоматических масляных выключателях и т. д. Масла с высокой степенью чистоты показывают то же самое значение при стандартных условиях от 30 до 35 кв. Для алканов [346] было показано, что диэлектрическая сила линейно увеличивается с плотностью жидкости. Для и-гептана было найдено соотношение между диэлектрической силой и изменением плотности с телтера-турой. Существует много причин, по которой диэлектрическая сила изолятора ослабевает самые важные, по-видимому, связаны с присутствием определенных примесей [347], полученных в результате коррозии, окисления, термического или электрического крекинга или газообразного разряда попадание воды является общеизвестной причиной аварий. [c.206]

    Примером катодной защиты может служить покрытие, получаемое погружением стального листа в расплав цинка горячее цинкование) (см. разд. 13.3.3). Этот метод впервые запатентован во Франции в 1836 г. и в Англии в 1837 г. [4]. Однако имеются упоминания, что во Франции цинковые покрытия наносили на сталь еще в, 1742 г. [5]. Наложение электрического тока впервые было применено для защиты подземных сооружений в Англии и США в 1910—19)2 гг. [4]. С тех пор использование катодной защиты в этой области быстро распространялось, и в настоящее время этим методом эффективно защишают от коррозии тысячи километров подземных трубопроводов и кабелей. Катодную за- [c.216]

    Электрические приборы, находящиеся под сетевым напряжением (220 В), должны удовлетворять соответствующим требованиям. Кабели и т. п. нельзя лодвергать химическому или другому воздействию (нагревание в печах), вызывающему коррозию. [c.512]

    Медь применяется в виде металла, многочисленных сплавов и соединений. Около 40% всей добываемой меди идет на изготовление электрических проводов и кабелей. Из меди изготовляют нагревательные аппараты. Сплавы меди с другими металлами широко применяются в машиностроительной промышленности, в электротехнике, в судостроении, энергетической промышленности. К важнейшим сплавам меди относятся бронза (90% Си, 10% Sn), латунь (60% Си, 40% Zn), мельхиор (80% Си, 20% N1), манганин (85% Си, 12% Мп, 3% N1), нейзильбер (65% Си, 20% Zn, 15% Ni), кон-стантан (59% Си, 40% N1, 1% Мп). Все медные сплавы обладают высокой стойкостью против атмосферной коррозии. Современные серебряные монеты сделаны из сплава меди с никелем ( u+Ni). [c.418]

    Электрохимическая защита. Этот метод защиты основан на тормо-н ии анодных или катодных реакций коррозионного процесса. (Электрохимическая защита осуществляется присоединением к защ1р щаемой конструкции металла с более отрицательным значением электродного потенциала — протектора, а также катодной или анодной поляризацией за счет извне приложенного тока Наиболее применима электрохимическая защита в коррозионных средах с хорошей электрической проводимостью. Катодная поляризация используется для защиты от коррозии подземных трубопроводов, кабелей. Катодную защиту применяют также к шлюзовым воротам, подводным лодкам, водным резервуарам, морским трубопроводам и оборудованию химических заводов. [c.221]

    Медь исп0.1ьзу 0т для Из меди, обладающей хорошей теплопроводностью, кухонной утвари. изготавливают кухонную посуду. Высокая электро-.. э.аектр неских проводность меди делает ее исключительным мате-1 .ис. ей. риалом для изготовления электрических проводов и кабелей. Медь устойчива к коррозии и из нее изготавливают детали водяных насосов. Широкое применение находят сплавы на основе меди латунь (Си, 2п), бронза (Си, Зп), сплав для чеканки монет (Си, N1) .  [c.541]

    При разведке и разработке континентального шельфа усиленной коррозии подвергаются эстакады, подземные трубопроводы, хранилища, электрические кабели и др. Морская вода—весьма агрессивная среда. Она представляе собой сложный раствор миогочис . -Нг л ,. .- кй Б шое содержание в ней ионов хлора препятствует ус1анов 1ению пассивного состояния дла железа, чугуна, низко- и среднелегированных сталей. [c.13]

    Первые сильные явления электрохимической коррозии в районе трамвайных путей обнаружились в 1887 г. в Бруклине па кованых железных трубах и летом 1891 г. в Бостоне на свинцовых оболочках телефонных кабелей [56]. Для исследования этих явлений в США была учреждена первая комиссия по блуждающим токам. Эта комиссия установила, что имелась значительная разность потенциалов между трубами и рельсами электрических железных дорог и что трубы подвергались опасности в тех местах, где их потенциал по отношению к грунту был положительным и ток стекал с них в окружающую среду, что вызывало электролиз . Флемминг экспериментально установил, что железные поверхности, уложенные во влажный песок, при разности потенциалов между железом и песком в 0,5 В и стекающем токе силой 0,04 А уже через несколько дней подвергались заметной коррозии. В 1895 г. Э. Томсон оборудовал первый прямой отвод блуждающего тока к трамвайным рельсам в Бруклине. Выполнением такой связи пытались возвратить блуждающие токи непосредственно к рельсам, предотвращая этим их вредное действие [47]. Однако сила блуждающих токов в некоторых местах при этом настолько возросла, что зачеканенпый в муфтах свинец расплавлялся и вытекал. [c.40]

    Для кабелей связи ввиду особенностей их конструктивной формы и условий эксплуатации требуются некоторые мероприятия, отличающиеся от мероприятий по защите трубопроводов от коррозии. Все кабели телефонной и телеграфной связи имеют в соответствии с нормалью VDE 0816 либо совершенно герметичную металлическую оболочку вокруг сердечника, либо (если эти кабели выполнены целиком из полимерного материала) металлическую ленту для электрического экранирования [1, 2]. У кабелей с защитной оболочкой из джута и жидкотекучей массы над металлической оболочкой переходное сопротивление на землю значительно меньше, чем у кабелей с полимерной оболочкой. На центральных телефонных станциях или усилительных подстанциях металлические оболочки или экраны соединяют с эксплуатационным заземлителем, чтобы улучшить экранирующее действие оболочек кабеля и уменьшить переходное сопротивление на землю эксплуатациониых заземлителей. Еще несколько лет назад применяли преимущественно кабели с металлической оболочкой. При наличии опасности коррозии для таких кабелей необходимо было предусматривать катодную защиту. Современные кабели слоистого типа с полимерной защитной оболочкой в катодной защите от коррозии в общем случае не нуждаются. [c.297]

    Для защиты от коррозии при укладке в землю свинцовую оболочку кабелей обвертывают несколькими чередующимися слоями пропитанной бумаги и жидкотекучего битума. Для механической защиты на кабелях небольшого диаметра предусматривается броня из тесно прилегающих друг к другу витков круглой проволоки па кабелях большого диаметра выполняется броня в виде плющеной проволоки (плоской оплетки). Поверх брони располагается слой пропитанного джута, который хотя и дает некоторую защиту от коррозии, но не обеспечивает электрической изоляции оболочки кабеля по отпощепию к земле. Бесспорные преимущества по защите от коррозии имеют бесшовные и беспористые оболочки (шланги) из полиэтилена толщиной 1,6—4,0 мм. Активная катодная защита от коррозии поэтому применяется главным образом для кабелей со свинцовой оболочкой, имеющих джутовую изоляцию. Кабели с оболочками из других металлов могут быть подключены к системе катодной защиты, но при этом должны быть проведены особые предупредительные мероприятия [3]. У кабелей с гофрированной стальной оболочкой жилы охватываются лентой из углеродистой стали, сваренной продольным швом без нахлестки. На изготовленной таким способом трубе-оболочке выполняют поперечные гофры для придания ей гибкости. Впадины гофров заполняют пластичной массой, прочно сцепляющейся и с металлом, и с полимерным материалом, а затем всю конструкцию обматывают лентой из полимерного материала. Поверх этого слоя далее получают экструдированием полимерную оболочку из полиэтилена. Полимерная оболочка получается практически беспористой и поэтому обеспечивает хорошую защиту от коррозии. Дефекты могут образоваться только на муфтах и в местах механических повреждений. [c.299]

    Многие сети газоснабжения и водопроводные сети в городах еще состоят из старых труб, имеющих в ряде случаев очень плохое изоляционное покрытие. У силовых кабелей и кабелей телефонных сетей оболочка обычно тоже почти не обеспечивает достаточной электрической изоляции, если только она не выполнена пластмассовой. Мероприятия по защите от блуждающих токов на каком-либо из таких сооружений сами по себе обычно невозможны, потому что имеется много соединений с потребителями и случайных контактов на пересечениях в грунте. В общем случае все трубопроводы и кабели, расположенные в грунте поблизости от тяговых трамвайных подстанций, подвергаются-опасности коррозии. Поэтому часто приходится рекомендовать совместные мероприятия по защите от блуждающих токов [16]. Более крупные трамвайные сети питаются от большого числа тяговых подстанций. Простые или усиленные дренажи блул сдающнх токов следует сооружать по возможности в непосредственной близости от подстанций. На подстанциях большой мощности, например на центральных подстанциях постоянного тока, для защиты распределительных сетей обычно [c.334]

    Расположенные на промышленных предприятиях защищаемые системы — трубопроводы, емкости, сосуды, колонны и др. промышленные агрегаты — все чаще сооружаются таким образом, чтобы их системы бьиш металлически связаны с конструкциями из бетона и стали (фундаменты, стены зданий, опоры и т. п.). Так как сталь в бетоне имеет более высокий положительный потенциал, чем сталь в грунте (примерно на 0,2-0,5 В), то объекты, контактирующие с бетоном, подвержены интенсивному коррозионному воздействию. При создании новых конструкций из бетона и стали необходимо предусмотреть электрическую изоляцию бетонных поверхностей. Опасность коррозии металл—бетон может быть устранена созданием локальной катодной защиты. С помощью катодной поляризации постоянным током стремятся выровнять разлгганые потенциалы металлов. Хотя сталь в бетоне сама по себе не корродирует, однако ее катодно поляризуют, чтобы не было коррозионного воздействия на проложенные в земле металлические системы (трубопроводы, кабели, складские емкости газов и т. п.). Для этого требуется защитный ток поверхности бетона плотностью 2-5 А/м . Защитный ток защищаемых объектов должен быть в пределах 10-50 мА/м, что в сравнении с защтным током бетона представляется весьма незначительной величиной. Это связано с тем, что из-за больших площадей бетонных конструкций (фундаментов и т. п.) в грунт надо вводить большие токи. [c.131]

    Определение капитальных затрат. Под капитальными затратами на осуществление защиты трубопроводов от коррозии подразумеваются затраты на изготовление или приобретение оборудования для осуществления защиты (изоляционные покрытия, УКЗ, протекторы, дренажи, кабели и т. п.), его доставку, а также затраты на монтаж оборудования. Кроме того, к капитальным относятся затраты на изыскания с целью определения коррозпон-кости грунтов вдоль трассы трубопровода, естественных потенциалов грунта и разности потенциалов труба — земля (в случае, если установка электрической защиты проектируется на законченном строительстве или уже эксплуатирующемся трубопроводе). Сюда же относятся затраты, связанные с определениями влияния установок электрозащиты на соседние сооружения. [c.279]

    В качестве изолирующих вставок на кабелях связи обычно используются пескопесчаные, свинцовые, пластмассовые и чугунные муфты. Они устраиваются в местах разреза оболочки и брони для изоляции жил кабеля при выходе кабеля из канализации на воздушные линии в местах пересечения с рельсами трамвая и электрических железных дорог, для ликвидации местных, стабильных во времени, анодных зон (образующихся на участках трассы повышенной влажности и пересечении водных преград) при вводах в туннели и здания, а также в случае, когда применение дренажа создает опасность усиления коррозии на близлежащих подземных сооружениях. [c.202]


Смотреть страницы где упоминается термин Электрическая коррозия кабелей: [c.75]    [c.45]    [c.218]    [c.385]    [c.8]    [c.98]    [c.98]    [c.365]    [c.88]    [c.88]   
Смотреть главы в:

Проектирование кабельных сетей и проводок -> Электрическая коррозия кабелей




ПОИСК





Смотрите так же термины и статьи:

Вопросы безопасности при электрохимической защите силовых кабелей от коррозии. Опасность поражения электрическим током

Кабели

Кабели электрические

Основные принципы электрической защиты кабелей от коррозии



© 2025 chem21.info Реклама на сайте