Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катодная защита подземных трубопроводов от коррозии

    Катодная и анодная защита. Катодное покрытие трубопроводов и других подземных сооружений применяется, как правило, совместно с каким-либо неметаллическим покрытием с целью предотвращения коррозии там, где в покрытии имеются или образуются во время эксплуатации дефекты и повреждения. В зависимости от характера покрываемого предмета может быть использована катодная защита с применением тока от внешнего источника или протекторная защита. При катодной защите можно избежать загрязнения раствора путем применения нерастворимых анодов. Материалами для изготовления катодов служат пластифицированная медь или бронза [281—283]. [c.228]


    В присутствии воды интенсивность коррозии усиливается. Поэтому необходимо применять осушку газа. Для транспортирования газов, вызывающих усиленную коррозию, следует применять трубопроводы из специальных сталей, а также использовать антикоррозионные покрытия. При подземной прокладке газопроводов основным видом защиты от почвенной коррозии являются изоляционные покрытия (битумные и др.). На особо опасных участках почвы для защиты газопроводов от коррозии, вызываемой блуждающими токами, применяют катодную защиту, а также электрический дренаж. [c.192]

    Совместная катодная защита от почвенной коррозии (защита нескольких подземных металлических трубопроводов общими катодными установками) надежна и рациональна, она исключает вредное влияние катодных установок одного трубопровода на другой. Схема атого способа защиты проста и требует меньшего числа катодных установок, чем при раздельной защите каждого из сооружений в отдельности. [c.177]

    Катодная защита подземных трубопроводов отличается значительно меньшей стоимостью по сравнению с любым из других способов, обеспечивающим такую же эффективность их защиты от коррозии. Например, уверенность в том, что в катодно защищаемых подземных трубопроводах не возникнет сквозных разрушений, делает экономически целесообразной транспортировку по ним нефти и природного газа под высоким давлением на большие расстояния. [c.183]

    Для выяснения причин коррозии и мер ее предотвращения коррозионисты-исследователи изучают механизмы коррозионных процессов. Инженеры-коррозионисты используют накопленные наукой знания с учетом эксплуатационных данных и экономических факторов. Например, инженер-коррозионист осуществляет катодную защиту подземных трубопроводов или испытывает и разрабатывает новые краски, рекомендует добавки ингибиторов коррозии или металлическое покрытие. Ученый-коррозионист для этога разработал оптимальные варианты катодной защиты, определил молекулярную структуру химических составов с лучшими ингибирующими свойствами, создал коррозионностойкие сплавы и определил режим их термической обработки. Как науч- [c.16]

    Применять методы электрохимической защиты от коррозии начали в первую очередь в химической промышленности около 15 лет назад вначале нерешительно, как это было и с применением катодной защиты подземных трубопроводов около 30 лет назад. Препятствие к более щирокому применению заключалось главным образом в том, что внутренняя защита должна в большей мере выполняться по индивидуальным проектам, чем простая наружная защита подземных сооружений. В связи с возросшей важностью обеспечения повышенной надежности производственных установок, с ужесточением требований к коррозионной стойкости и укрупнением деталей и узлов установок начал проявляться интерес к электрохимической внутренней защите. Хотя на вопрос об экономичности защиты нельзя дать общего ответа (см. раздел 22.4), все же очевидно, что расходы на электрохимическую защиту будут меньше расходов на высококачественную и надежную футеровку (на покрытия) или на коррозионностойкие материалы. При этом анализе нельзя не отметить, что наде кная эксплуатация очень крупных выпарных аппаратов для щелочных растворов вообще стала возможной только благодаря применению внутренней анодной защиты, поскольку достаточно эффективный отжиг для снятия внутренних напряжений крупных резервуаров практически неосуществим, а конструктивные и эксплуатационные напряжения вообще не могут быть устранены. [c.400]


    Влияние катодных установок защищаемого трубопровода на соседние трубопроводы или близлежащие кабели считается вредным, когда уменьшение (по абсолютной величине) минимального или увеличение (по абсолютной величине) максимально допустимого защитного потенциала на соседних металлических сооружениях, имеющих катодную поляризацию, составляет более 0,1 В или когда появляется опасность коррозии на соседних подземных металлических сооружениях, ранее не требовавших защиты. [c.175]

    Для подземных трубопроводов стоимость катодной защиты намного ниже, чем при использовании любых других способов, обеспечивающих аналогичную степень защиты. Гарантия того, что в катодно защищенных подземных трубопроводах не происходит сквозных разрушений вследствие коррозии со стороны грунта, сделала экономически оправданным и применение высокого давления для транспортировки нефти и газа на большие расстояния, например через американский континент. [c.228]

    Источниками блуждающих постоянных токов обычно являются пути электропоездов, заземления линий постоянного тока, установки для электросварки, системы катодной защиты и установки для нанесения гальванических покрытий. Источники блуждающих переменных токов — это обычно заземления линий переменного тока или токи, индуцированные в трубопроводах проложенными рядом электрическими кабелями. Пример возникновения блуждающего постоянного тока от трамвайной линии, где стальные рельсы используются для возвращения тока к генераторной станции, показан на рис. 11.1. Вследствие плохого контакта рельсов на стыках и недостаточной изоляции их от земли часть тока выходит в почву и находит пути с низким сопротивлением, например подземные газо- и водопроводы. В точке А труба попадает под воздействие катодной защиты и не подвергается коррозии, а в точке В, напротив, сильно корродирует, так как по отношению к рельсам является анодом. Если в точке В труба защищена неметаллическим покрытием, это усугубляет коррозионные разрушения, так как в этом случае все блуждающие токи выходят через дефекты в покрытии трубы, что вызывает увеличение плот-, ности тока на ограниченных участках поверхности и ускоряет разрушение трубы. [c.210]

    Современные средства катодной защиты подземных трубопроводов от почвенной коррозии. Автоматические выпрямители [c.58]

    При проектировании защиты подземных трубопроводов от электрохимической коррозии на стадии "Проект" разрешается проводить расчеты сметной стоимости по укрупненным показателям. В случае расчета лишь катодной защиты используется стоимость одной катодной установки, что позволяет значительно упростить расчеты. Методика упрощенного расчета, впервые предложенная нами, приводится ниже. [c.22]

    Катодные установки применяют в следующих случаях при наличии остаточных положительных потенциа лов на трубопроводе после ввода в эксплуатацию электродренажных установок этим обеспечивается более надежная защита подземного трубопровода от коррозии поляризованные электродренажи включаются только в момент появления анодной зоны на трубопроводе, в остальное время трубопровод электрохимически не защищается  [c.170]

    Основным методом электрохимической защиты от подземной (почвенной) коррозии металлических сооружений из углеродистых сталей является катодная зашита магистральных и промысловых нефтегазопроВ уктопроводов, городских подземных трубопроводов и коммуникаций, нефтехранилищ и нефтебаз, компрессорных станций, обсадных колон и скважинного оборудования и т.п. [c.4]

    Средства и способы защиты от коррозии выбирают исходя из условий прокладки трубопроводов с учетом результатов техникоэкономических вариантных расчетов. Способы защиты подземных трубопроводов подразделяют на два вида—пассивный (изоляция трубопроводов и применение специальных методов прокладки, исключающих контакт металла трубы с грунтом) и активный (катодная поляризация трубопроводов наложенным током). [c.161]

    Коррозия трубопроводов. Подземные металлические трубопроводы усиленно корродируют вследствие заражения грунтов агрессивными стоками и особенно в связи с переводом внутризаводского и внезаводского транспортов на электрическую тягу, использующих для контактных токопроводов постоянный ток. Применяемые способы пассивной антикоррозионной защиты подземных трубопроводов битумной гидроизоляцией с крафт-бумагой не дают должного эффекта, поэтому наряду с пассивной рекомендуется активная защита (катодная, протекторная) подземных трубопроводов. [c.16]

    Электрохимическая защита. Этот метод защиты основан на тормо-н ии анодных или катодных реакций коррозионного процесса. (Электрохимическая защита осуществляется присоединением к защ1р щаемой конструкции металла с более отрицательным значением электродного потенциала — протектора, а также катодной или анодной поляризацией за счет извне приложенного тока Наиболее применима электрохимическая защита в коррозионных средах с хорошей электрической проводимостью. Катодная поляризация используется для защиты от коррозии подземных трубопроводов, кабелей. Катодную защиту применяют также к шлюзовым воротам, подводным лодкам, водным резервуарам, морским трубопроводам и оборудованию химических заводов. [c.221]


    Катодные оболочки непригодны для защиты подземных трубопроводов от почвенной коррозии [c.16]

    Котик В. Г. Установки катодной защиты магистральных трубопроводов. Теория и практика противокоррозионной защиты подземных сооружений. Труды VI Всесоюзного совещания по коррозии и защите металлов. Изд. АН СССР, 1958. [c.204]

    Электрохимическая защита от коррозии подземного трубопровода заключается в катодной поляризации трубопровода с защитной разностью потенциалов трубопровод — земля. В местах соприкосновения металла трубопровода с грунтом ток из грунта входит в трубопровод, поляризуя и защищая его таким образом от коррозии. [c.160]

    Коррозионное растрескивание под напряжением (КРН) часто является причиной разрушения подземных газопроводов [12—18]. В катодно защищенных трубопроводах КНР начинается на внешней поверхности трубы, чаще всего в местах нарушения покрытий. Вблизи от участка разрушения под нарушенным покрытием обнаруживают раствор карбоната/бикарбоната натрия, а иногда и кристаллы МаНСОз. Предполагают, что эта среда наиболее благоприятна для КРН. В большинстве конструкций, где применяется катодная защита стали от общей коррозии, сталь поляризуют до потенциала —0,85 В по отношению к Си/Си504-электроду, что соответствует значению —0,53 В по н. в. э. Катодная защита подземных трубопроводов может приводить к накоплению на поверхности трубы щелочных продуктов, например гидроксида натрия, а также растворов карбоната/бикарбоната натрия [19, 20]. Ионы водорода, катионы Na+ и вода, содержащая растворенный кислород, мигрируют к катодным участкам трубы через поры [c.186]

    Примером катодной защиты может служить покрытие, получаемое погружением стального листа в расплав цинка горячее цинкование) (см. разд. 13.3.3). Этот метод впервые запатентован во Франции в 1836 г. и в Англии в 1837 г. [4]. Однако имеются упоминания, что во Франции цинковые покрытия наносили на сталь еще в, 1742 г. [5]. Наложение электрического тока впервые было применено для защиты подземных сооружений в Англии и США в 1910—19)2 гг. [4]. С тех пор использование катодной защиты в этой области быстро распространялось, и в настоящее время этим методом эффективно защишают от коррозии тысячи километров подземных трубопроводов и кабелей. Катодную за- [c.216]

    Автоматическая сетевая катодная станция СКСП-1200п241Д предназначена для катодной защиты подземных металлических трубопроводов от почвенной коррозии на участках с большим сезонным колебанием переходного сопротивления труба — грунт , при нестабильности напряжения питающей сети, а также в зоне действия блуждающих токов. Станция может быть использована в качестве автоматической усиленной дренажной установки. [c.149]

    Возможность применения в любое время катодной защиты, обеспечивающей дополнительную защиту подземных трубопроводов, делает ее незаменимой, особенно на линиях, где обнаружилось коррозионное разрущение. При выполнении катодной защиты возникают трудности в связи с необходимостью равномерного распределения тока по металлической поверхности в случае сложной сети подземных линий, параллельных трубопроводов, винтовых и раструбных соединений и т. п., которые не легко преодолеть. Катодной защитой нельзя пользоваться на трубопроводах, уложенных в коллекторе и подверженных в сущности атмосферной, а не почвенной коррозии. Постоянное наблюдение за катодной защитой может вести и заводской персонал. Лищь периодически требуется проверка условий защиты, выполняемая специалистами. [c.98]

    Бутырский А. П., Кузнецов М. В., Тугунов П. И. Определение параметров катодных установок в условиях густоразветвленной сети подземных трубопроводов. Коррозия и защита в нефтегазовой промышленности , № 10, 1975. [c.84]

    Следует упомянуть о применении коррозионной защиты с использованием ленты, особенно для трубопроводов, например подземных. Прежде чем наматывать ленту, поверхность необходимо очистить от масла, прежних покрытий, ржавчины и посторонних вещеав. Затем накладывают грунт, чтобы обеспечить хорошую адгезию ленты к металлу. Лента представляет собой пленку толщиной около 0,5 мм из поливинилхлоридного или полиэтиленового пластика. Часто ее сочетают с покровной лентой, назначением которой является механическая защита (рис. 82). Наложение всех этих компонентов можно производить вручную, но можно выполнять в больших объемах с помощью спещ альных обмоточных машин. На стыках защиту обеспечивают с помощью манжеты из усаживающегося пластика, который при нагревании сокращается и дает плотное соединение. Обертку лентой часто комбинируют с катодной защитой, которая предотвращает коррозию в порах и разрывах, могущих возникнуть во время наложения или установки. [c.90]

    Катодная защита широко применяется как дополнительное (к изолирующему покрытию), а иногда и как самостоятельное средство защиты от коррозии подземных металлических сооружений— трубопроводов, газопроводов, резервуаров и др. За последнее время расширилось применение катодной защиты для предупреждения коррозии заводской аппаратуры — конденса-TiopoB, холодильников, теплообменников и др. [c.199]

    Технич. трудности при катодной защите сводятся главным образом к необходимости достаточно равномерного распределения тока по защищаемой поверхности и наличия токопроводящей среды, в окр5 жепии к-рой находится защищаемый металл. При полющи катодной защиты предохраняют от коррозии подземные и подводные трубопроводы, силовые кабели и кабели связи, внутренние поверхности и днища резервуаров, химическую и теплообменную аппаратуру, морские суда, буи, сваи, эстакады и др. Критерием полной защиты чаще [c.44]

    Вопросы надежной защиты подземных металлических трубопроводов от коррозии имеют исключительно важное народно-хозяйственное аначение. В настоящее время в СССР нашли широкое практическое применение разнообразные способы защиты подземных трубопроводов от коррозии, в том числе противокоррозионная изоляция, катодная, протекторная и электродренаЖ ная защиты и др. Однако наиболее распространенным способом защиты является тонкослойная изоляция, в основном битумная, Трубопроводы, подверженные воздействию электрохимической коррозии, отделяются от агрессивной окружающей среды (грунта, жидкости) противокоррозионными оболочкам . Но по своим механическим и электрохимическим качествам битумные оболочки, в том виде, в котцром они сейчас применяются, недостаточно надежны. Опыт эксплуатации подземных металлических трубопроводов, покрытых битумной изоляцией, показал, что срок службы ее в большинстве случаев не превышает Ю лет. В то же время срок эксплуатации подземного трубопровода определяется 50—100 годами. Таким образом возникает несоответствие /между сроком эксплуатации трубопровода и сроком службы противокоррозионной изоляции. Поэтому уже в первые годы экоплуатации изолированных трубопроводов приходится вводить дополнительные противокорроз1ионные защитные мероприятия, как например, протекторную и катодную защиты и другие устройства. Помимо битумной изоляции, в настоящее время разрабатываются и начинают применяться другие виды противокоррозионных оболочек, например пластмассовые, асбестоцементные, бетонные, цементнобитумные и др. [c.3]

    Изложены краткая теория, порядок расчета, расчетные зависимости и необходимые материалы для расчета на стадии проектирования катодной и злектродренажной защиты от наружной коррозии разветвленной сети подземных металлических трубопроводов водоводов, га-зоириводов, ге1глопроводов. [c.2]

    Зашита подземных трубопроводов от почвенной коррозии может быть активной и пассивной. К активным средствам защиты подземных трубопроводов от наружной коррозии относятся электрические методы, катодная и протекторная защита. При пассивной защите на наружную поверхность трубопроводов наносят покрытия и изоляцию, при активной — устраняют гфичины, вызывающие коррозию. [c.192]

    Особо ценными для эксплуатационных испытаний являются методы, позволяющие постоянно наблюдать за коррозионным состоянием работающих конструкций. Так, методика опытной катодной станции дает возможность определить среднее переходное сопротивление изоляции участка эксплуатируемого подземного трубопровода без выполнения земляных работ по его вскрытию. Эффективность методов защиты трубопроводов от коррозии проверяют с помощью контрольных образцов в определенных точках защищаемого трубопровода помещают пары контрольных образцов, из которых один присоединен к трубопроводу и, таким образом, также защищен от коррозии, а другой находится отдельно (рис. 366) по потерям массы защищенного и незащищен- [c.472]

    Основной причиной появления ржавчины в клеевом слое и частичного внедрения ее в основу ленты является то, что ржавчина, остающаяся на поверхности трубопровода после его очистки очистной машиной, механически внедрилась в покрытие при нанесении его с натяжением на трубу. В первый год эксплуатации трубопровода без подключения катодной защиты на металле из-за коррозии под покрытием образовалось некоторое количество окислов железа процессов коррозии, которое и промигри-ровало в клей. На более поздней стадии службы покрытия на подземном трубопроводе, когда под влиянием процессов, приводящих к изменению структуры покрытия. [c.16]

    Радикальным методом защиты магистральных газопроводов от КР является кажущийся, на первый взгляд, парадоксальным отказ от катодной защиты, однако это может привести к снижению надежности магистральных газопроводов вследствие общей коррозии трубопровода. Кроме того, как это было показано рядом исследователей, в ряде грунтов растрескивание может происходить и без катодной поляризации труб. С точки зрения традиционной карбонатной теории, КР может быть предотвращено с помощью точного контроля величины поляризационного потенциала на всем протяжении трубопровода. Однако на практике этот способ трудно осуществить. Как было показано многочисленными исследованиями, проведенными в нашей стране и за рубежом, различные участки одного и того же подземного со- оружения имеют неодинаковый потенциал [202]. Предложения о повышении потенциала на поверхности трубопровода или использовании прерывистой катодной защиты [142, 217] не дали положительных результатов [136] из-за экранирования токов катодной защиты пузырьками водорода под отслоившейся изоляцией [141, 142, 217]. Рекомендации и патентные решения о подкачке потенциала под отслоившейся изоляцией с помощью локальных цинковых протекторов, являющихся частью комбинированного защитного покрытия, не осуществимы в большинстве случаев из-за образования на поверхности цинка в растворах солей угольной кислоты труднораспю-римых соединений, приводящих к снижению разности потенциалов гальванопары железо - цинк , а в определенных условиях даже к изменению полярности гальванопары [144]. [c.96]

    Для определения параметров рассмотренных моделей были проведены коррозионно-усталостные испытания трубной стали 17Г1С в условиях, моделирующих натурные (катодная поляризация, коррозионная среда). Актуальность проведения таких исследований связана с необходимостью определения усталостных характеристик для подземных магистральных трубопроводов, которые, как отмечено выше, в соответствии с требованием СНиП 2.05.06-85, защищают от коррозии комплексно с использованием катодной защиты. [c.109]

    Кузнецов М, В., Бутырский А. П., Тугунов П. И. Проектирование и эксплуатация катодной защиты в условиях густоразветвленной сети подземных трубопроводов. РНТС Коррозия и защита , № 6, 1976. [c.85]


Библиография для Катодная защита подземных трубопроводов от коррозии: [c.84]   
Смотреть страницы где упоминается термин Катодная защита подземных трубопроводов от коррозии: [c.13]    [c.99]    [c.37]    [c.127]    [c.196]    [c.40]    [c.4]    [c.371]   
Ремонт и эксплуатация технологических трубопроводов в химической, нефтяной и газовой промышленности (1966) -- [ c.67 , c.69 , c.70 ]




ПОИСК





Смотрите так же термины и статьи:

Защита катодная

Защита от коррозии

Подземная коррозия

Ток катодный

Трубопроводы катодная защита



© 2025 chem21.info Реклама на сайте