Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции коррозионные катодная

    Очень ценные сведения о кинетике электродных реакций коррозионных процессов дают поляризационные кривые V = / (/) (см. с. ]94), которые получают, измеряя потенциал электрода из исследуемого металла при анодной и катодной поляризации его (пропускание тока возрастающей силы прямого и обратного направления) от внешнего источника постоянного электрического тока на установках, подобных изображенной на рис. 345. [c.456]


    Основываясь на том, что, изменяя скорость коррозионного процесса, ингибиторы должны влиять на кинетику электрохимических реакций, У. Р. Эванс классифицировал все ингибиторы на анодные, катодные и смешанные, имея в виду, что первые замедляют анодную реакцию, вторые — катодную, а третьи — обе реакции одновременно. Такое деление ингибиторов часто применяют к неорганическим соединениям в водных средах. [c.89]

    Катодные ингабиторы влияют на скорость катодной реакции коррозионного процесса. К ним относятся активные восстановители, связывающие кислород и уменьшающие его содержание в растворе (например, сульфид натрия или гидразин), защищающие вещества, уменьшающие поверхность катода за счет образования пленок труднорастворимых соединений, а также вещества, затрудняющие катодную реакцию коррозии металла (катионы тяже.тых металлов, например, висмута и мышьяка). [c.26]

    Д )угой катодной реакцией коррозионного процесса является восстановление кислорода, в кислом растворе восстановление протекает по уравнению [c.23]

    Чаще всего ингибитор оказывает одинаковое действие на всю металлическую поверхность, не проявляя повышенной эффективности на анодных или катодных участках, т. е. замедляет одновременно обе реакции. Коррозионный потенциал металла изменяется не очень сильно (чаще всего менее чем на 0,1 В), однако скорость коррозии резко снижается. Одна из существенных особенностей органических ингибиторов травления состоит в том, что их вводят в небольших количествах. Обычно концентрации ингибиторов травления составляют величину порядка 0,01—0,1%. [c.60]

    Торможение реагентом ДИМ-1 обеих реакций коррозионного процесса (анодной и катодной) вызвало поляризацию соответствующей реакции, а следовательно, увеличение наклонов поляризационной кривой (рис.8). [c.14]

    Если в состав защитной пленки с низкой адгезией к металлу включен водорастворимый ингибитор коррозии или если сам электролит, проникающий через пленку смазочного материала содержит водо- или водомаслорастворимые ингибиторы, то торможение электрохимической коррозии будет проходить по детально изученным механизмам ингибирования в водных средах в результате торможения анодной и (или) катодной реакции коррозионного процесса. [c.80]

    Электродные процессы, уменьшающие поляризацию, это процессы деполяризации. Деполяризация уменьшает смещение потенциалов у электродов и увеличивает скорость коррозии. Совмещенный график поляризационных кривых, выражающих зависимость скорости катодной и анодной реакций коррозионного процесса от потенциала, называется поляризационной коррозионной диаграммой (рис. 8.2), Наклон поляризационных кривых характеризует скорость протекания электродной реакции и находится в прямой зависимости от поляризационного сопротивления и силы тока чем меньше угол наклона, тем больше скорости электродной реакции, так как снижается сопротивление электрода протеканию на нем реакции. Величины tg а и tg р представляют собой соответственно поляризационные сопротивления катода и анода определяющие контролирующий фактор процесса коррозии (см. рис. 8.2). [c.203]


    Одной из особенностей электрохимической коррозии является зависимость скорости ее от электродных потенциалов анодной (1.1) и катодной (1.2) реакций. Как видно на рис. 5, в процессе коррозии значения электродных потенциалов изменяются потенциал анодной реакции (кривая /м) смещается в сторону более положительных значений, а потенциал катодной реакции (кривая /н) — в сторону более отрицательных. Кривые г м и н характеризуют зависимость скоростей анодной (растворение металла) и катодной (выделение водорода) реакций коррозионного процесса от потенциала — анодная и катодная поляризационные кривые. Точка пересечения анодной и катодной кривых указывает на оси абсцисс максимальную плотность тока коррозии, а на оси ординат — потенциал коррозии. [c.19]

    Запишите катодные реакции коррозионного процесса в водных растворах и уравнения для расчета их равновесных потенциалов. [c.26]

    В том случае, когда металл не поляризуется внешним током и электрод сравнения находится на некотором расстоянии от металла — вне действия электрического поля коррозионного микроэлемента, измеряется потенциал коррозии (стационарный потенциал), соответствующий гипотетическому максимальному току кор-розии. Поэтому при построении коррозионных диаграмм обычно сопоставляют величину стационарного потенциала с током коррозии, вычисленным из величины потери массы металла по закону Фарадея. На коррозионных диаграммах приводят также значения равновесных потенциалов для катодной и анодной реакций коррозионного процесса. [c.54]

    Электрохимическая защита. Этот метод защиты основан на торможении анодных или катодных реакций коррозионного процесса. Электрохимическая защита осуществляется присоединением к защищаемой конструкции металла с более отрицательным значением электродного потенциала — протектора, а также катодной (катодная защита) или анодной (анодная защита) поляризацией за счет извне приложенного тока. Наиболее применима электрохимическая защита [c.332]

    Электрохимическая защита. Этот метод защиты основан на торможении анодных или катодных реакций коррозионного процесса. Электрохимическая защита осуществляется присоединением к защищаемой конструкции металла с более отрицательным значением электродного потенциала — протектора, а также катодной или анодной поляризацией за счет извне приложенного тока. Наиболее применима электрохимическая защита в коррозионных средах с хорошей ионной электрической проводимостью. Катодная поляризация используется для защиты от коррозии подземных трубопроводов, кабелей. Катодную защиту применяют также к шлюзовым воротам, подводным лодкам, водным резервуарам, морским трубопроводам и оборудованию химических заводов. [c.238]

    Совмещение катодных и анодных реакции типично для коррозии чистых металлов и амальгам их более или менее полное пространственное разделение — для коррозии технических металлов. Меньшая стойкость технических металлов по сравнению с чистыми, а также изменение характера коррозионных разрушений во многом связаны с деятельностью гальванических микроэлементов основной металл — включение. [c.498]

    Катодные ингибиторы влияют на скорость катодной реакции коррозионного процесса. К ним относятся активные восстановители, связывающие кислород и уменьшающие его содержание в растворе ( например, сульфид натрия или гидрозин), защищающие вещества, уменьшапцие поверхность катода за счет образования пленок труднорастворимых соединений ( например, Са(НСО ) или п ЗОц ), а также вещества, затрудняющие катодную реакцию коррозии металла ( катионы тяжелых металлов, например, вИсмута и Мышьяка), Ингибиторы смешанного действия замедляют как анодцую, таи и катодную реакции процесса корроаии. К этой группе ингибиторов относятся полифосфаты и силикаты. [c.53]

    Известно, что общая скорость процесса коррозии определяется скоростью той реакции, которая протекает с наименьшей интенсивностью. Эта стадия процесса называется контролирующим фактором, так как она контролирует скорость всего процесса. Если коррозия металла подземного сооружения определяется деятельностью микро-коррозионных элементов, то контролирующим фактором процесса является катодная или анодная реакция. Коррозионный процесс с катодным контролем (катодна51 реакция) характерен для большинства плотных и увлажненных грунтов, когда основную роль играет реакция присоединения свободного электрона (кислородная или водородная деполяризация) протекающая с минимальной скоростью. Это объясняется торможением поступления воздуха к поверхности корродирующего металла. Для сухих, рыхлых и хорошо аэрируемых грунтов характерен анодный контроль, когда затруднен отвод положительных ионов металла от анодного участка поверхности металлического [c.45]


    Анодная и катодная реакции коррозионного процесса являются первичными процессами электрохимической коррозии. При коррозии возмояшы и вторичные процессы, связанные с образованием вторичных, зачастую труднорастворимых продуктов коррозии, существенно снижающие скорость коррозионного разрушения металлов. Так, железо и стали, растворяясь в крепкой (70 % и выше) серной кислоте, образуют нерастворимый в ней сульфат, защищаюнщй поверхность от воздействия среды. При коррозии сталей в средах с pH > 5,5 на поверхности образуется труднорастворимый-вторичный продукт — гидроксид железа (II), который в результате взаимодействия с растворенным в среде кислородом образует еще более труднорастворимый продукт — бурый гидроксид железа (III), обладающий хорошими защитными свойствами [42]. [c.24]

    Визуальные наблюдения ведут и над агрессивной средой. Если она неподвижна, то можно определить зону распространения продуктов коррозии. В электролиты вводят специальные реагенты, позволяющие наблюдать за распределением катодных и анодных участков по поверхности металла. К таким реагентам относятся КзРе(СМ)б-2Н20, с помощью которого можно фиксировать анодные участки по синему окрашиванию раствора, и фенолфталеин, окрашивающийся в розовый цвет под действием щелочной реакции на катодных участках металлической поверхности. Применение этих реагентов позволяет наблюдать за появлением на поверхности металла коррозионных микрогальванических элементов. [c.39]

    Можно убедиться в том, что при наличии диффузионных ограничений, когда катодный участок макропары работает в режиме предельного тока, соотношение между 0 и 1—0 будет оказывать влияние на силу тока макропары только в одном направлении чем больше доля катодной зоны 1—0, тем больший ток будет давать макропара. Его величина просто равна (1 (1—0). Этот вывод был сделан еш,е Акимовым, подчеркнувшим то обстоятельство, что при работе коррозионного элемента с кислородной деполяризацией (в модельных опытах) площадь анода и сами поляризационные его характеристики не оказывают влияния на силу тока. В соответствии с этим сила тока макропары будет монотонно возрастать по мере увеличения катодной зоны до тех пор, пока не переменятся факторы, контролирующие скорость катодного процесса. Например, можно предвидеть, что при очень резком сокращении анодной зоны катодный процесс станет опре-деляться уже не диффузионными, а кинетическими факторами, т. е. замедлеиностью самой восстановительной реакции в катодной зоне. [c.171]

    Скорость электрохимической коррозии определяется скоростью анодной и катодной реакций коррозионного процесса. Скорость этих реакций можно рассчитать по изменению потенциала электрода при прохождении через него тока. Торможение какой - либо стадии коррозионного процесса в этом случае характеризуется заметным изменением потенциала электрода при увеличении тока. Зависимость потенциала электрода от плотности проходящего через него тока представляет собой поляризационную кривую. Анализ поляризационных кривых позволяет получить достаточно полнуто информацшо о характере коррозионного процесса. [c.29]

    Электрохимическое и коррозионное поведение металлов в присутствии ванадатов различно и зависит от состава последних. Поведение ортованадата натрия NaзV04 ничем не отличается от поведения рассмотренных выше ингибиторов с обшим анионом типа М02 (рис. 5,16а), а поведение метаванадата натрия ЫаУОз, наоборот, существенно отличается. Метаванадат по мере увелц-чения его концентрации в растворе непрерывно уменьшает скорость коррозии, не приводя к увеличению ее интенсивности. При концентрации 0,25 моль/л коррозия стали в 0,1 н. N32804 полностью приостанавливается (рис. 5,166). Такое удивительное поведение ингибитора связано с тем, что он не выводит из сферы анодной реакции часть поверхности электрода, пока металл не переходит полностью в пассивное состояние. Растворение происходит по всей поверхности. Этот ингибитор не косвенно, а непосредственно влияет на кинетику анодной реакции эффективность катодного процесса при этом не изменяется, что сказывается на характере изменения потенциала (см. рис. 5,16 6). В широкой области концентраций метаванадат натрия не оказывает влияния на электродный потенциал последний остается таким же, как и в фоновом электролите. При этом различным скоростям растворения соответствуют одинаковые значения потенциала. [c.171]

    Скорость разряда водорода на поверхности металла взначитель-ной степени зависит от природы металла. Это наблюдение следует всегда иметь в виду при рассмотрении коррозионных катодных реакций, протекающих в основном с водородной деполяризацией. В частности, следует принимать во внимание состав поверхности металла, [c.95]

Рис. 1. Анодная потенциостатическая кривая, объясняющая механизм изменения ингибиторами скорости коррозии. АБВГД — анодная кривая для исходного электролита АВГД — анодная кривая для случая, когда ингибитор тормозит анодную реакцию ЕЖ — катодная поляризационная кривая для реакцип восстановления кислорода ИК — катодная кривая для ингибитора, восстанавливающегося с малой скоростью ЛМ — катодная кривая для ингибитора, восстанавливающегося с больщой скоростью фь ц>2, Фз, ф4 — стационарные потенциалы г ь 2, з, 4 — коррозионные токи пи — ток полной пассивации Рис. 1. Анодная <a href="/info/520474">потенциостатическая кривая</a>, объясняющая <a href="/info/295686">механизм изменения</a> <a href="/info/402740">ингибиторами скорости</a> коррозии. АБВГД — <a href="/info/402614">анодная кривая</a> для исходного электролита АВГД — <a href="/info/402614">анодная кривая</a> для случая, когда <a href="/info/1608615">ингибитор тормозит анодную</a> реакцию ЕЖ — <a href="/info/638168">катодная поляризационная кривая</a> для реакцип <a href="/info/306013">восстановления кислорода</a> ИК — <a href="/info/372412">катодная кривая</a> для ингибитора, восстанавливающегося с <a href="/info/332910">малой скоростью</a> ЛМ — <a href="/info/372412">катодная кривая</a> для ингибитора, восстанавливающегося с <a href="/info/199843">больщой</a> скоростью фь ц>2, Фз, ф4 — стационарные потенциалы г ь 2, з, 4 — <a href="/info/1059887">коррозионные токи</a> пи — ток полной пассивации
    Анион органического вещества, имеющий небольшие размеры, действительно ускоряет указанные реакции в этом случае он не ингибитор, а стимулятор коррозии. Анионоактивные вещества с длинной гидрофобной цепью могут быть, наоборот, ингибиторами коррозии, потому что, во-первых, они в растворе кислоты уподобляются веществам неионогенного типа, механизм действия которых уже рассмотрен во-вторых, вещества с более длинной гидрофобной цепью создают в приэлектродном слое более слабое электрическое поле, поэтому влияние их на изменение потенциала в реакционной зоне ослабевает. Как видно из рис. 3, б (кривая 3) в случае адсорбции анионов с более длинной гидрофобной ценью скачок потенциала в реакционной зоне уменьшается (г зР << г 5Р). Следовательно, в соответствии, с теорией замедленного разряда, уменьшаются скорости электрохимических реакций коррозионного процесса. Поэтому эффективность действия таких ингибиторов увеличивается. В то же время, как показали исследования [7, 8], в отличие от анионов органичен ских веществ ионы галогенов, хотя и имеют небольшие размеры, все-таки являются не стимуляторами, а ингибиторами коррозии стали в серной, хлорной и соляной кислотах. Объяснение наблюдаемому явлению дано в работе [8]. Авторы предположили, что при специфической адсорбции анионов на поверхности стали образуется хемисорбированное соединение атомов железа с этими ионами. Диполи этих соединений располагаются своим отрицательным концом в сторону раствора. В соответствии с рассмотренной схемой адсорбции ионов галогенов я з1-потенциал сдвигается в положительную сторону. Вследствие этого катодная реакция восстановления Н3О+ и анодная реакция ионизации металла замедляются, вызывая общее замедление растворения стали. В результате специфической адсорбции ионов галогенов уменьшается положительный заряд металлической обкладки двойного слоя. Поэтому облегчается адсорбция катионов органических веществ и увеличивается ингибирующее действие этих катионов в присутствии ионов галогенов. Механизм действия анионов органических и неорганических веществ различен. Поэтому понятно, почему в присутствии анионов органических веществ эффективность действия катионов органических веществ выражена меньше [3, 7]. Эффективность неионогенных веществ в присутствии анионов неорганических веществ также увеличивается. [c.135]

    Во всех этих случаях введение дополнительного окислителя в растворе приводит к ускорению катодных реакций коррозионного процесса. Однако Ре +-ионы ускоряют и ионизацию титана, а Ni2+-H0Hbi и Си +-ионы способствуют пассивации. [c.148]

    Представление о стационарном потенциале с успехом было применено в лаборатории Хаккермана при исследовании коррозии железа в кислоте, при наличии в растворе окислителей и без них. Скорость коррозии в 2 н НС1 в отсутствие воздуха не зависела от скорости перемешивания, но в кислоте, насыщенной воздухом, при вращении образцов она увеличивалась в 1,6 раза. Эти результаты дают основание считать, что скорость растворения в кислоте, не обладающей окислительными свойствами, контролируется обеими реакциями коррозионного процесса (катодной и анодной) и не зависит от концентрации ионов двухвалентного железа. При наличии кислорода в системе он катодно восстанавливается и увеличивает скорость растворения, которая затем становится зависимой от скорости восполнения кислорода, как это ыло обнаружено в старой работе Ван-Наме, Уитмена и др. (см. ниже). [c.760]

    Вк и Ва - соответственно наклоны тафелевых участков поляризационной кривой для анодной и катодной реакций коррозионного процесса. Увеличение поляризационного сопротивления свидетельствует об умень- [c.16]

    Потенциал Гкомп, при котором тою1 совмещенных реакций компенсируются, называется компромиссным, смешанным или стационарным потенциалом, поскольку он лежит между равновесными потенциалами частных реакций и его значение практически не изменяется во времени. В условиях коррозии металлов комп называется обычно коррозионным потенциалом кор. Как и в случае равновесного потенциала Гр, при потенциале комп наблюдается взаимная компенсация катодного и анодного токов. Различие между ними заключается в том, что при равновесных потенциалах компенсируются токи, отвечающие протеканию одной и той же реакции в противоположных направлениях величина тока в этом случае характеризует динамику равновесия данной электродной реакции и представляет собой ток обмена  [c.391]

    По теории местных элементов скорость коррозии (или пропорциональный ей электрический ток, возникающий в результате работы локальных гальванических пар) зависит не только от электрохимических свойств электродов З тих пар, но и от омического сопротивления среды, в которой совершается процесс коррозии и которая отделяет анод от катода. Определяюигне скорость коррозии соотиошения удобнее выразить гра( )ически при помощи так называемых коррозионных диаграмм. На коррозионной диаграмме (рис. 24.4) потенциалы анода и катода (или потенциалы анодного и катодного процессов) представлены как функция снлы тока. Когда нет коррозионного процесса и сила тока равна нулю, начальные значения потенциалов на аноде и катоде должны отвечать обратимым потенциалам анодной и катодной ё р реакций в заданных [c.496]


Смотреть страницы где упоминается термин Реакции коррозионные катодная: [c.32]    [c.111]    [c.147]    [c.111]    [c.22]    [c.6]    [c.78]    [c.491]   
Коррозия и основы гальваностегии Издание 2 (1987) -- [ c.13 , c.15 ]




ПОИСК





Смотрите так же термины и статьи:

Катодные реакции

Реакции коррозионные

Ток катодный



© 2025 chem21.info Реклама на сайте