Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление пара бинарной смеси равновесия

    Исследователи фазового равновесия проводят различие между изотермическими и циркуляционными методами при постоянном давлении. Принцип циркуляционного метода состоит в том, что бинарную смесь известного состава испаряют и после установления фазового равновесия (т. е. состояния, при котором число молекул, покидающих жидкость, равно числу молекул, возвращающихся в жидкость) при определенном давлении измеряют концентрации кубовой жидкости и сконденсированных паров. Мюллер и Штаге ([39] к гл. 1) дают превосходное введение в технику экспериментальных измерений на примере дистилляции [c.86]


    Если н идкую идеальную бинарную смесь в течение значительного времени выдержать в замкнутом объеме при кипении в условиях постоянной температуры и постоянного давления, система, состоящая из пара и жидкости, придет в состояние равновесия. Более строгим критерием установившегося равновесия будет равенство химических потенциалов всех компонентов в фазах. [c.289]

    Непрерывная противоточная перегонка в вакууме. Диаграмма фазового равновесия жидкость-пар бинарной смеси представлена на рис. 12.3. Из этой диаграммы видно, что вода и серная кислота образуют азеотропную смесь с максимальной температурой кипения 336,6 °С при атмосферном давлении, содержащую 98,3 % (мае.) Безводная серная кислота кипит при атмосферном давлении при температуре 296,2 °С, вьщеляя пары 80 и превращаясь при этом также в 98,3 %-ный водный раствор. Водные растворы, содержащие менее 70 % (мае.) Щ80 , при нагревании образуют пар, практически не содержащий серной кислоты. Ниже приведены температуры кипения 98 %-ной кислоты при различных остаточных давлениях  [c.412]

    Рассмотренный случай не является единственным. Так, если максимальное давление смеси совпадает с критическим давлением одного из компонентов (например, смесь N2 —Ог), то прерывность в равновесии жидкость — пар (а это и является характерным признаком, отличающим бинарную систему от чистого вещества) [c.305]

    Равновесная перегонка сравнительно редко применяется для разделения бинарных смесей. Чаще ее используют для разделения многокомпонентных систем, например, при перегонке нефти. В этом случае смесь нагревают под давлением в трубчатых аппаратах и подают в пространство с пониженным давлением. Образующиеся при этом пары находятся в условиях приблизительного равновесия и отделяются от перегретой жидкости. [c.37]

    Интегральные испарение и к(ш-денсация. На диаграмме температура— состав для бинарной системы, показанной на рис. 155, точка А отвечает жидкой смеси состава х . При изобарном нагревании этой жидкости она следует по пути АВ (постоянный состав). В точке J образуется первый пузырек пара, состав которого отвечает точке D. (Заметим, что при равновесии сосуществующие фазы должны иметь одинаковую температуру.) Если нагревание продолжается при постоянном составе и пар из системы не удаляется, то достигается точка, подобная точке , в которой система представляет смесь двух фаз (состава F и О). Если продолжается подвод тепла к системе (при постоянном давлении и при постоянном общем составе), то достигается точка N, когда в системе остаются только следы жидкости (точка росы С). Выше точки Н начинается область перегре- [c.662]


    Рассмотренный случай не является единственным. Так, если максимальное давление смеси совпадает с критическим давлением одного из компонентов (например, смесь N3—Од), то прерывность в равновесии жидкость — пар (а это и является характерным признаком, отличающим бинарную систему от чистого вещества) наблюдается только на одном конце фигуры Р—Т—/V, т. е. для смесей, богатых одним из компонентов. В случае же наличия экстремума прерывность будет в средней части диаграммы. Известны также системы, характеризующиеся наличием температурного максимума и минимума на критической кривой. [c.323]

    Исходные данные. Параметры, необходимые для обработки экспериментальных данных по фазовому равновесию, большей частью находятся в базе данных Центр . Это зависимость давления пара чистых компонентов от температуры, параметры, необходимые для учета неидеальности паровой фазы (фактор ацентричности, критические параметры и т. д.). Для расчета параметров уравнения Вильсона или NRTL необходимы бинарные равновесные данные по каждой из пар, составляюш,их многокомпонентную смесь. В общем случае данные могут быть вида х—у—Р—Т, однако можно использовать и неполные данные о равновесии, а именно а) х — Р (при Т = onst) б) х — Т Р — onst) в) коэффициенты активности при бесконечном разбавлении г) х—у—Р д) х—у—Т. [c.105]

    Впервые исследованы фазовые равновесия жидкость-пар и азеотропия в вакууме при остаточном давлении 1,333 кПа в бинарных системах линалоола с дегидролиналоолом и дигидролиналоолом а также с геранилацетоном (смесь изомеров) геранилацетона (смесь изомеров) с дегидронеролидолом неролидола с дегидронеролидолом цис- и транс- изомеров еранилацетона. Экспериментальные данные подтверждены результатами расчетов с применением ЭВМ, [c.5]

    Рассмотрим систему, состоящую из двухкомпонентной (бинарной) жидкой смеси и паров, образующуюся при ее кипении. В данном случае характеристическими параметрами, кроме давления и температуры, являются еще составы жидкости и пара. Если компоненты жидкой смеси абсолютно нерастворимы друг в друге, то /С = 2, Я = 3 и / = 1, т. е. система моновариантна. По условию равновесия изменение, например, давления над этой системой влечет за собой одновременное изменение температуры кипения и состава паровой фазы (состав жидкой смеси здесь роли не играет, так как ее компоненты взаимно нерастворимы). Если же рассматриваемая смесь состоит из компонентов с неограниченной взаимной растворимостью, то /С = 2, Я = 2 и / == 2, т. е. система бива-риантна. [c.424]

    Действительно, если для полного определения бивариантной двухфазной системы бинарной смеси при заданном общем давлении достаточно знать лишь концентрацию одного из компонентов в одной из фаз, то для полного определения /г-вариант-ной двухфазной системы, состоящей из п компонентов, необходимо знать уже концентрации п—1 компонентов в одной из фаз при заданном общем давлении. В общем случае это означает, что кривая фазового равновесия (изобара) для каждого компонента, находящегося в многокомпонентной смеси, является фупкциейпе только физико-химических свойств (качества) других компонентов, но и их абсолютных концентраций (количества). Этим собственно и отличается многокомпонентная смесь от бинарной смеси, где кривая фазового равновесия (изобара) для каждого из двух компонентов зависит только от физико-химических свойств (качества) другого. Следовательно, каждый компонент такой сложной смеси имеет не одну кривую фазового равновесия, а бесчисленное множество их, в зависимости от содержания других компонентов, что приводит к необходимости располагать многочисленными данными по равновесным соотношениям. Установление этих данных экспериментальным путем требует большого труда даже в случае трехкомпонентных смесей и практически становится невыполнимым если речь идет о смесях с большим числом компонентов. Более того, как уже говорилось выше, такой путь изучения равновесных соотношений здесь даже исключается, потому что данные, экспериментально установленные при каком-либо одном режиме для заданного разделения смеси, не могут быть использованы существующими методами для проведения расчетов при изменении хотя бы одного из условий этого режима для того же самого разделения смеси, например, при изменении флегмового числа. Проведение расчетов существующими методами становится возможным только в случае идеальной смеси, в которой летучесть каждого компонента пропорциональна абсолютной мольной доле этого компонента при любой температуре и любом давлении [481. Такие идеальные многокомпонентные смеси состоят обычно из химически родственных компонентов (например, смеси углеводородов в нефтяной или коксо-беизольной промышленности и т. д.) и равновесные соотношения для каждого компонента этой смеси в системе пар-— жидкость описываются достаточно точно уравнением  [c.78]


    Наибольшее практическое применение для обработки опытных данных о равновесии между жидкостью и паром получили различные формы уравнения Гиббса — Дюгема. Это уравнение, как известно, описывает условия фазового равновесия при постоянных температуре и давлении. Согласно правилу фаз Гиббса, бинарная двухфазная система при заданных двух параметрах состояния является нонвариантной, т. е. при заданных температуре и давлении может существовать лишь определенная жидкая смесь, находящаяся в равновесии с паровой фазой определенного состава. Таким образом, при Т — onst и Р = onst составы фаз, входящие в уравнение Гиббса — Дюгема, не могут рассматриваться как независимые параметры состояния системы и уравнения Гиббса — Дюгема и Дюгема — Маргулеса к бинарным двухфазным системам, строго говоря, неприменимы. Поэтому использование этого уравнения для обработки данных о фазовом равновесии в бинарных системах неизбежно связано с термодинамической нестрогостью. Последнюю легко выявить, сопоставляя уравнение Гиббса — Дюгема (1-206) и уравнение состояния фазы (1-193). Из этого сопоставления следует, что использование уравнения Гиббса — Дюгема для обработки данных о равновесии при Т = onst связано с допущениями, что AV JRT) dP = = О, т. е. что коэффициенты активности компонентов не зависят от давления. Последнее положение выполняется с высокой степенью [c.157]

    В производстве кино- и фотоматериалов получается водная смесь растворителей (ацетон, толуол, бутилацетат). С целью разработки метода регенерации этих растворителей необ.чодимо располагать данными по 4 1 ()вому равновесию жидкость — жидкость — пар. В настоящей работе представлены результаты экспериментального исследования фазового равновесия жидкость — пар для тройных подсистем ацетон — толуол — бутилацетат (I) и ацетон — вода — бутилацетат (II) и жид-кость — жидкость для системы (II), а также математического моделирования во всех бинарных и тройных подсистемах. Фазовое равновесие жидкость — жидкость — пар исследовали при атмосферном давлении на приборе, описанном в литературе [1]. Составы равновесных фаз определяли на хроматографе ЛХМ-8МД с катарометром. Колонка дли-лой 3 м и внутренним диаметром 3 мм заполнялась порапаком р5, анализ проводился при 200° с использованием водорода и качестве газа-носителя (100 мл/мин). [c.77]

    Рассмотрим рис. 3.12. Линии АС и ВС - это кривые упругости паров соответственно более летучего и менее летучего компонентов смеси, оканчивающиеся критическими точками и С,. На диаграмме изображены тря1 области парржидкостного равновесия, соответствующие трем разным составам бинарной смеси. Если в смео преобладает компонент 1, то зона двухфазного состояния находится внут> ри области, ограниченной линией А С В. Здесь А С - кривая точек кипения, В С[ - кривая точек росы, С - критическая точка, координаты которой равны критическим давлению и температуре заданной смеси. [c.110]


Смотреть страницы где упоминается термин Давление пара бинарной смеси равновесия: [c.353]    [c.34]    [c.103]   
Фазовые равновесия в химической технологии (1989) -- [ c.137 ]




ПОИСК





Смотрите так же термины и статьи:

Бинарные смеси

Бинарные смеси давление пара

Давление бинарных

Равновесия смесях



© 2025 chem21.info Реклама на сайте