Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конденсация однократная

    При некоторой температуре однократного испарения, отвечающей так называемой точке конца кипения рассматриваемой системы, жидкая фаза полностью исчезает, испаряется последняя ее капля, и вся система в целом оказывается в паровой фазе. При этом состав паров в точности равен первоначальному составу а системы. Температура конца кипения ниже точки кипения ia компонента системы а, играющего в данном случае, роль высококипящего компонента. Точка является фигуративной точкой состояния системы в конце ее кипения, а точка Ri характеризует температуру и состав последней капли жидкости, равновесной с образовавшимися парами. Если при однократном испарении начальной системы поднять ее температуру выше то фигуративная точка Z,,, выражающая ее состояние, перейдет в область перегретого пара, расположенную на диаграмме равновесия выше изобарной кривой конденсации СЕ. [c.45]


    Простая перегонка жидких смесей осуществляется путем постепенного или однократного их испарения, а простая перегонка паровых смесей — путем постепенной или однократной их конденсации. При постепенной перегонке жидких смесей они постепенно нагреваются от начальной температуры до конечной с непрерывным отводом из системы образующихся паров. При однократной перегонке жидкость нагревается до заданной температуры, при которой паровая фаза однократно отделяется от жидкости. [c.13]

    Многократная перегонка бинарных смесей. Многократное выкипание или конденсация состоят из двух или большего числа однократных процессов изменения фазового состояния. В каждом из этих процессов вновь образовавшаяся фаза отделяется от равновесного остатка исходной системы, а последний подвергается дальнейшему тепловому воздействию для проведения следующей ступени процесса. [c.68]

    НИ один из рассмотренных выше процессов испарения или конденсации — однократный, многократный и постепенный не позволяет получать в больших количествах и в достаточно чистом виде низкокипящий или высококипящий компоненты, яв- ляющиеся составными частями исходного сырья. Эта задача может быть решена лишь при помощи процесса ректификации, проводимого в специальных аппаратах, называемых ректификационными колоннами. [c.315]

    Процессы однократного испарения или конденсации приводят к образованию паровой фазы, более богатой летучими компонентами и жидкой фазы, менее богатой летучими компонентами, чем исходная смесь. Но и в том и другом случаях разделить жидкость или пары на чистые компоненты не удается. [c.210]

    Этот процесс прямо противоположен испарению, вследствие чего возможны два вида конденсации однократная и постепенная. Проследим однократную конденсацию на кривых изобар бинарной смеси [c.232]

    Расчет однократной перегонки. Расчет процесса однократной перегонки обычно проводится с целью определения доли отгона е при однократном испарении или доли конденсации (1—е) при однократной конденсации смеси и состава образовавшихся фаз и Xi для заданных условий разделения Т я Р. [c.63]

    Аналогично в каждой последующей ступени многократного процесса конденсации ожижению подвергаются все более легкие паровые остатки, поэтому очевидно, что при одной и той же конечной температуре процесса степень ожижения, достигаемая при однократной конденсации, должна быть больше, чем при многократной. [c.69]

    Отсюда можно заключить, что однократная конденсация паровой смеси позволяет получить ту же степень ожижения при более высокой температуре, чем в многократном процессе, и поэтому паровой остаток, полученный при многократной конденсации, должен содержать больше низкокипящего компонента, ибо находится при более низкой температуре. [c.69]


    Таким образом, в зависимости от относительных количеств НдО и углеводородов в исходной паровой смеси в процессе ее однократной конденсации в общем случае вначале выпадает только одна жидкая фаза — водная или углеводородная. Из расчета точки начала конденсации можно определить НзО или углеводороды первыми полностью перейдут из паровой смеси в конденсат, который на этом концевом участке кривой однократной перегонки будет представлять собою однофазную жидкость. [c.92]

    В рассмотренном выше расчетном примере определения точки росы водно-углеводородной смеси оказалось, что при достижении температуры начала конденсации углеводородная часть системы становится насыщенной, а HjO остается в области перегретого пара. В этом случае, очевидно, на всем участке кривой однократной перегонки, отвечающем однофазной жидкости [c.93]

    Пример 11.6. Для рассмотренной в предыдущем примере водно-угле-водородной спстемы, у которой в точке начала конденсации первой начинает переходить в конденсат углеводородная часть, рассчитать температуру пересечения обеих ветвей кривой однократной перегонки. [c.94]

    Расходы тепла на проведение однократных процессов испарения и конденсации однородных в жидкой фазе при точке кипения растворов частично растворимых веществ удобнее всего определять по тепловым фазовым диаграммам. Пусть исходная жидкая система состава а и веса L, находящаяся при некоторой температуре tf , более низкой, чем ее точка кипения под заданным внешним давлением, нагревается до температуры t однократного испарения и равновесно разделяется на две фазы— паровую и жидкую. Пусть вес паровой фазы О, состав у и теплосодержание Q, вес жидкой фазы g. состав х и теплосодержание д. Если начальное теплосодержание сырья составляло Q , и на его нагрев от о до t было затрачено У калорий тепла, то можно написать следующие уравнения теплового баланса процесса и материального баланса по общему весу потоков и по весу содержащегося в них компонента w  [c.62]

    Пусть требуется подвергнуть однократной конденсации пар состава а, фигуративная точка которого расположена в области перегретого пара при некоторой температуре Процесс охлаждения этого пара изобразится вертикальным отрезком Z-iW j и в точке V2, лежащей на кривой конденсации СЕ пар придет в насыщенное состояние и появится первая капля равновесной жидкой фазы R2, отвечающая составу Х2. Однократное охлаждение уже насыщенного пара до некоторой температуры t, промежуточной между его точками начала и конца конденсации, изобразится вертикальным отрезком l/jSi, и фигуративная точка его придет в положение Si, отвечающее двухфазному жидко-паровому состоянию системы. [c.45]

    Из проведенного рассмотрения процессов однократного испарения и конденсации гомогенных в жидкой фазе систем частично растворимых компонентов эвтектического типа можно сделать заключение о полной их аналогии с соответствующими процессами в системах растворов, близких по своим свойствам к идеальным. Поэтому процессы многократного испарения и конденсации, состоящие в повторении конечное число раз процессов однократных, с удалением каждый раз из системы образовавшихся фаз, не рассматриваются особо для системы частично растворимых веществ. [c.46]

    Простая перегонка нефтяных смесей изображается кривыми однократного испарения (ОИ), устанавливающими зависимость доли отгона от температуры нагрева смеси. В американской практике используют аналогичные кривые равновесного однократного испарения EFV (equilibrium flash vaporization). Кривые ОИ характеризуют также условные температуры кипения смеси при нечетком их разделении, а начальные и конечные точки кривой ОИ определяют соответственно истинные температуры кипения жидких смесей и конденсации паровых смесей заданного состава. [c.57]

    Если же в ходе процессов многократного и однократного испарения была достигнута одна и та же общая степень отгона, то жидкий остаток, полученный в многократном процессе, должен находиться при более высокой температуре и соответственно будет обеднен компонентом, играющим роль низкокипящего в большей степени, чем жидкий остаток, полученный при той же степени отгона однократным испарением. В процессах же конденсации насыщенных паров при однократном процессе для одной и той же температуры, степень конденсации больше, чем в процессе многократном. [c.46]

    Поэтому при одной и той же степени конденсации остаток паров многократного процесса более богат компонентом, играющим роль низкокипящего, чем остаток паров, получаемый при той же степени конденсации процессом однократным. Объясняется это тем, что одна и та же степень конденсации в процессе многократном получается при более низкой температуре системы. [c.46]

    Таким образом, применяя аналитические соотношения, известные из теории процессов перегонки растворов, характеризующихся монотонным изменением летучих свойств компонента, к частично растворимым системам, образующим постоянно кипящие смеси с минимумом точки кипения, можно получить все необходимые уравнения для расчета однократных и постепенных процессов испарения и конденсации. При этом очень важно учитывать характер парожидкого равновесия в рассматриваемой системе и строго указывать границы, в которых применимо то или иное уравнение. [c.52]


    Если требуется подвергнуть однократной конденсации систему 1, фигуративная точка которой расположена в области перегретого пара, а состав а. заключен в интервале концентраций 0<а<ЛА, то процесс охлаждения этого пара представится  [c.57]

    Аналогично предыдущему, степень конденсации г, на основании соотношения 41, может быть найдена из метрических свойств равновесной диаграммы, по правилу рычага, как отношение отрезков Si l/i и il i. С понижением температуры конденсации разрыв между составами равновесных фаз становится меньше, их составы по высококипящему компоненту w уменьшаются, и равновесные пар и жидкость обогащаются низкокипящим компонентом а. Очевидно, полная однократная конденсация наступает при температуре i конца конденсации, совпадающей с точкой начала кипения рассматриваемой системы состава а. Таким образом и процесс однократной конденсации вполне аналогичен уже рассмотренному соответствующему процессу в системах однородных в жидкой фазе частично растворимых компонентов эвтектического типа. [c.57]

    Здесь также особо не рассматриваются процессы многократного испарения и конденсации, состоящие в повторении конечное число раз процессов однократных, с удалением каждый раз. из системы образовавшихся фаз. [c.57]

    На равновесной изобарной диаграмме кривых кипения и конденсации на соответствующих ветвях помечены взаимно эквивалентные точки одними и теми же буквами, различающимися только штрихами. Поэтому, исходя из подробно описанного процесса однократного испарения и конденсации систем, состав а которых заключен в интервале концентраций 0<а<л А, нетрудно разобрать эти же процессы для систем, состав а которых заключен в интервале Хв<а <1. [c.58]

    Процессы однократного испарения и конденсации происходят в различных аппаратах. Например, при нагреве сырья в трубах печи происходит его частичное испарение. Смесь паров и жидкого остатка находится в тесном соприкосновении и в состоянии равновесия ностунает в ректификационную колонну. В испарительной части колонны происходит разделение равновесных фаз (паровой и жидкой). Подобные процессы протекают в дефлегматорах-конденсаторах на верху ректификационных аппаратов. Здесь из проходящих паров путем их частичного охлаждения и конденсации однократно отделяется жидкость (флегма), поступающая на верхнюю тарелку в виде горячего орошения. [c.149]

    Различают однократную, многократную и постепенную конденсацию. Однократную конденсацию осуществляют в одну ступень, многократную ведут последовательными ступенями, в каждой из которых пары частично конденсируют, отводят образовавпгуюся жидкую фазу, а оставшиеся пары подвергают частичной конденсации в последующей ступени. При этом паровая фаза обогащается легколетучими компонентами, однако выход их уменьшается по мере увеличения числа ступеней. Постепенная конденсация осуществляется так, что образовавшаяся жидкость отводится из системы непрерывно по мере ее образования. [c.98]

    Если отгоняемые пары подвергнуть частичной конденсации (однократная перегонка с дефлегмацией паров), в первую очередь сконденсируются пары менее летучего вещества, а оставшиеся нескон ден-сированными пары обогатятся более летучим веществом, т. е. отделение более летучего вещества будет полнее. При однократной перегонке с частичной конденсацией получают конденсат, обогащенный более летучим компонентом смеси, и кубовую жидкость, обогащен- [c.35]

    При испарении одпокомпопентпых систем независимо от способа нспареиия — постепенного пли однократного — температура системы остается постоянной до полного испарепия системы. То же постоянство температуры имеет место при конденсации, причем температуры испарепия и конденсации равны. [c.196]

    Процесс однократной конденсации протекает аналогично процессу однократного исиарения. Если охлаждать перегретые пары, отвечающие точке В а, то в точке В г ири температуре h выделится первая капля конденсата, имеющая состав хг, а состав паров определится абсциссой г/2. При дальнейшем охлаждении паров до температуры t часть их сконденсируется, причем выделившаяся ишдкость будет иметь состав х, а пары будут иметь состав у. При температуре ti пары полностью сконденсируются и состав конденсата совпадает с составом исходных паров уг = x , а последний пузырек паров будет иметь состав yi. [c.198]

    Обычно ректификационная колонпа снабжается большим числом тарелок, на каждой из которых происходит процесс массообмена, сопровождающийся однократным испарением и конденсацией. Для создания нисходящего потока жидкости пары с верха колонны пропускают через конденсатор образующийся конденсат вводится в колонну в качестве орошения. Для создания потока поднимающихся паров в нижнюю часть колонны подводится тепло. В непрерывно действующей колонне сырье загружают в среднюю часть колонны, называемой испарительной (эвапорационной) частью. [c.210]

    Однократная перегонка бинарных смесей с монотонными кривыми равновесия. Для вывода количественных соотношений, описывающих ход процесса однократной перегонки, достаточно исходить из следующей схемы. Дана исходная система из L кмолей раствора с начальным составом и энтальпией На, кДж/кмоль. Система может быть жидкой или паровой, однофазной или двухфазной, недогретой до точки начала кипения или перегретой выше точки начала конденсации. Если вместо энтальпии Но задана ее температура Iq, то должно быть известно, какая часть системы находится в жидкой и какая в паровой фазе, чтобы можно было рассчитать энтальпию сырья. Во всяком случае считается, что состояние исходной системы полностью определено. Требуется выяснить, как оно изменится, если системе будет передано или у нее отнято определенное количество теила Q, кДж/ч. [c.65]

    Аналогично, если нанести на график подынтегральное выражение уравнения (11.90) как функцию мольной доли х по ИТК сырья, определяющей температуру кипения точечного псевдоком-нонента, то площадь под кривой в пределах от = О до = 1 должна определить величину мольной степени конденсации системы нри заданных давлении и температуре. Площадь под той же кривой, но в пределах от О до некоторого произвольного значения Х1 , отнесенная ко всей площади от 2 1, = О до хь = i, дает значение абсциссы точки на кривой ИТК остатка однократной перегонки, температура которой отвечает данному Х . Расчет нескольких таких точек позволяет построить кривую ИТК остатка однократной перегонки нефтяной фракции. [c.107]

    Испарение жидкости и конденсацию паров можно вести двумя принципиально различными способами—однократным и постепенным, по терминологии проф. А. М. Трегубова. [c.41]

    В рассматриваемом случае ни однократная, ни постепенная перегонка не представляют никакого практического инте pe a, ибо состав у пара таков, что при его полной конденсации вновь образуется гетерогенная смесь, т. е. получается своеобразный порочный круг в процессе перегонки, когда ее целевой продукт совпадает с начальным. Однако, рассмотрение этого процесса было предпослано описанию важного случая испарения однородной в н<идкой фазе системы частично растворимых компонентов, из соображений не только чистб теоретических, но еще и потому, что этот Определение расхода тепла на перегонку неодно-проыесс все же на- родной жидкой системы первого типа, [c.43]

    Соотношение 22 позволяет находить степень конденсации паров по метрическим свойствам равновесной диаграммы как отношение отрезков 11/Г и RiVl. С понижением температуры составы равновесных паров по компоненту w становятся все больше, т. е. по мере конденсации в жидкую фазу преимущественно переходит компонент а, играющий в данном интервале концентраций роль высококипящего компонента. Полная однократная конденсация наступает при температуре при точке конца конденсации, совпадающей с точкой начала кипения рассматриваемой начальной системы состава а в фигуративной точке I. [c.46]

    Пусть точка Ь на изобарной равновесной кривой жидкости АС является фигуративной точкой жидкой начальной системы, находящейся при температуре кипения (фиг. 16). Состав а этой системы заключен в интервале концентрации и < а < хд и поэтому в точке кипения она однородна в жидкой фазе. Состав первого микроскопического пузырька равновесного ей пара изобразится абсциссой точки V, представляющей точку пересечения изотермы 1 начала кипения исходной системы с изобарной кривой конденсации СЕ. Перегонку начнльной системы можно вести двумя способами—однократным и постепенным. [c.56]

    Совершенно аналогично протекают процессы однократного испарения и конденсации од нородных при точке кипения в жидкой фазе систем, составы а которых заключены в интервале концентраций л в<а <1 и фигуративные точки Е которых расположены на кривой кипения ВО. Здесь также степень отгона при однократном процессе определяется по уравнению 40, а степень конденсации—по уравнению 41, По мере повышения температуры процесса разрыв между составами равновесных фаз сужается, и фазы обедняются низкокипящим компонентом. Наоборот, при понижении температуры процесса фазы обогащаются низкокипящим компонентом, причем жидкая в меньшей степени, чем паровая и поэтому разрыв между составами равновесных паровой и жидкой фаз увеличивается. [c.58]

    С другой стороны, если фигуративная точка (а, исходной системы лежит выше коноды, соединяющей фигуративные точки (x,q) и (у, Q) равновесных фаз, то J L< O, расход тепла на проведение процесса оказывается отрицательным, что указывает на необходимость отнятия, а не сообщения тепла для получения из начальной системы указанных равновесных фаз, т. е. указывает на протекание в системе однократной конденсации, а не испарения. Так обобщаются процессы однократного испарения и конденсации при их рассмотрении на тепловой диаграмме. [c.63]

    Процессы однократной конденсации насыщенных паров, составы о которых находятся в интервалах концентраций 0<а<уе и Уе< <1, протекают вполне аналогично соответственным процессам в ранее рассмотренных системах, причем по мере понижения температуры остаточный пар и равновесная жидкость все более обогащаю1ся компонентом, играющим для данного интервала концентраций роль низкокипящего. [c.65]

    Процесс однократной конденсации в парциальном конденсаторе представляется на тенловой диаграмме вертикальным отрезком РР , пропорциональным расходу тепла й, отнесенному к единице веса паров О], поднимающихся с верхней тарелки колонны. Фигуративная точка Р, на коноде АЕ представляет двухфазную парожидкую систему, разделяющуюся на флегму gA, стекающую из парциального конденсатора в колонну в виде орошения и на пар Е, поступающий в полный конденсатор-холодильник. Расход тепла в парциальном конденсаторе может быть измерен и отрезком 5з , пропорциональным величине Рас- [c.93]

    Ввод в разработку в середине 50-х годов газоконденсатных месторождений усложнил подготовку газа к транспортиропа-нню. Теперь требовалось извлекать из газа и жидкл е углеводороды — газовый конденсат. Был разработан процесс низкотемпературной сеиарации газа — процесс однократной конденсации ири температурах —10- —15°С с иснользовачием ингибиторов гидратообразования. [c.7]

    Что такое однократная конденсация Как распределяю-ся компонен-Т1,1 между фазами при однократной конденсации  [c.48]


Смотреть страницы где упоминается термин Конденсация однократная : [c.19]    [c.163]    [c.118]    [c.57]    [c.58]   
Переработка нефтяных и природных газов (1981) -- [ c.164 , c.294 ]




ПОИСК





Смотрите так же термины и статьи:

Блок-схема расчета однократной конденсации испарения

Конденсация интегральная однократная

Материальный и тепловой балансы однократного испарения и конденсации

Многокомпонентная ректификация однократного испарения и конденсации смесей

Многокомпонентная ректификация однократной конденсации

Однократная и постепенная конденсация парообразной емеби взаимно растворимых компонентов

Однократное испарение Интегральное испарение и конденсация

Однократное испарение и конденсации в системах частично растворимых жидкостей

Однократное испарение и конденсация

Однократное испарение и конденсация как методы разделения

Однократное испарение и однократная конденсация многокомпонентных систем

Однократное испарение и однократная конденсация растворов нор- j мального типа

Однократное испарение и однократная конденсация растворов нормального типа

Определение доли отгона и состава фаз при однократном испарении и конденсации сложной смсси

Перегонка и ректификация. (Равновесные системы Константы фазового равновесия. Однократные и многократные процессы испарения и конденсации. Перегонка с водяным паром. Ректификация. Отгонные колонны)

Процессы однократного испарения (ОИ) и однократной конденсации (ОК)

Процессы однократного испарения и конденсации в многокомпонентных системах

Расчет однократной конденсации испарения

Схемы однократной конденсацией

УПРАВЛЕНИЕ. И РАСЧЕТ ПРОЦЕССОВ ИСПАРЕНИЯ И КОНДЕНСАЦИИ Управление процессами однократного испарения и однократной конденсации



© 2025 chem21.info Реклама на сайте