Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классификация связанной влаги

    Предложена классификация форм связи влаги с материалами по энергетическому принципу [1], согласно которой существуют формы связи трех типов химическая, физико-химическая и физикомеханическая. Химически связанная влага, количество которой определяется соответствующим-и стехиометрическими соотношениями, удерживается веществом наиболее прочно и в большинстве случаев при тепловой сушке не удаляется из влажных материалов. Физико-химически связанная влага удерживается на внутренней поверхности пор адсорбционными силами. Ее количество может быть различным в зависимости от пористости материала и внешних условий — температуры и влажности окружающей среды. Физико-механически связанная влага — это жидкая фаза, находящаяся в крупных капиллярах, а также влага смачивания, которую принимает тело при непосредственном контакте с жидкостью. Удаление этой влаги при сушке требует наименьших затрат энергии, равных теплоте парообразования жидкости. [c.125]


    Решающую роль в технологии сушки играет форма связи влаги с материатюм и его дисперсность, они же определяют во многом возможные методы интенсификации процесса. Различные формы связанной влаги обуславливают разные по величине и природе энергии связи с дисперсными системами, подвергающимися сушке. Так в частности проводились эксперименты с такими ветцествами как соли бария (карбонат и гидроксид), а также цеолитами марок ЫаХ и NaA. Согласно классификации академика П.А,Ребиндера по типу связи влаги с материалом, исследуемые вещества относятся к трем из пяти существующих форм. [c.14]

    Механизм сушки влажных материалов определяется в основном формой связи влаги с материалом и режимом сушки или условиями испарения влаги с поверхности материала в окружающую среду. За основу классификации форм связи влаги с материалом в настоящее время принята схема, предложенная акад. П. А. Ребиндером, согласно которой различают 1) химическую связь влаги с материалом, 2) физико-химическую связь и 3) физикомеханическую связь. Химически связанная влага удерживается наибш. [c.17]

    По классификации П.А.Ребиндера, основанной на анализе форм и энергии связи влаги с материалом, суспензионный ПВХ после выделения его из суспензии в осадок содержит свободную (несвязанную) влагу, находящуюся в макрокапиллярах и макропорах с г> 10-" м. В принципе эта влага может быть удалена механическим способом, однако применяемое для разделения суспензий ПВХ высокопроизводительное оборудование, в частности осадительные центрифуги со шнековой выгрузкой осадка, не обеспечивает полного удаления свободной влаги. Например, после осадительных центрифуг в ПВХ остается 10 - 15% этого вида влаги из 25 - 30% общего количества воды в осадке. По данным Б.С.Сажина [120] содержание влаги в пористом ПВХ в макрокапиллярах при стыковом состоянии достигает 21 -26%. Большая часть остальной влаги является капиллярно связанной (радиус капилляров г< 10 м), на испарение ее требуется дополнительная к теплоте фазового превращения энергия, обусловленная снижением давления пара над вогнутой поверхностью менисков воды. Дополнительную энергию можно рассчитать как работу отрыва одного моля при изотермическом обратимом процессе [82]  [c.87]

    Классификация камер холодильной обработки, в основу которой положено различие, связанное с видами отвода теплоты от продукта, а также со способами загрузки и механизации, показана на схеме. Чаще всего в установках для холодильной обработки сочетаются следующие виды теплообмена конвекция, радиация, сублимация или испарение влаги с поверхности продукта и десублимация на поверхности приборов охлаждения. [c.124]


    Примечания. 1. В данную классификацию не включены угли с необычными физическими и химическими свойствами, но по содержанию связанного углерода и теплоте сгорания соответствующие типам каменных углей с высоким выходом летучих и полубит инозных углей они либо содержат менее 48% связанного углерода на горючую массу, либо теплота сгорания беззольного угля превышает 3900 ккал. 2. Под теплотой сгорания беззольного угля понимается теплота сгорания угля с естественным влагосодержанием угольного пласта, а не с влагой, выступающей на его поверхности. [c.68]

    Процесс удаления влаги из влажного материала сопровождается нарушением связи ее со скелетом вещества, на что затрачивается некоторая энергия. Построена классификация различных форм связи влаги с твердым веществом по величине энергии таких связей, согласно которой существуют связи трех видов [1] химическая, физико-химическая и физико-механическая. Химически связанная влага удерживается веществом посредством ионных или молекулярных связей наиболее прочно и не удаляется из влажных тел при нагревании до 100—120 °С. Количество химически связанной влаги определяется стехиометрическим соотношением, а ее удаление в большинстве случаев обусловливает изменение химического состава вещества, что выходит за рамки обычного процесса промышленной сушки влажных материалов. В дальнейшем процесс удаления химически связанной влаги здесь не рассматривается. [c.234]

    Процесс удаления влаги сопровождается нарушением ее связи со скелетом материала, на что затрачивается энергия. По величине энергии таких связей построена классификация [1] различных форм связи влаги с твердым веществом. Химически связанная влага удерживается наиболее прочно и не удаляется из влажных тел при нагревании до 100—120 °С. Физико-химически связанная влага удерживается на внутренней поверхности пор материала адсорбционными силами. В отличие от химически связанной, количество адсорбционной влаги для одного и того же материала может быть существенно различным в зависимости от внешних условий — температуры и влажности окружающей среды. Физико-механически связанная влага находится в крупных капиллярах и на наружной поверхности материала (влага смачивания) [c.4]

    Приведена [16], [295] классификация, в соответствии с которой влага в осадке подразделяется на пленочную, капиллярную, поровую связанную и поровую несвязанную. [c.268]

    Наименьшей энергией связи обладает влага на поверхности материала и внутри его крупных пор, наибольшей — внутри микрокапилляров. Заметим, однако, что реальные материалы, подвергаемые сушке, имеют, как правило, неоднородную пористую структуру, поэтому они редко укладываются в строгую классификацию по форме связи влаги. В связи с этим применительно к сушке различают две формы влаги свободную и связанную. Свободной называется влага, испаряюш,аяся с поверхности влажного материала с той же скоростью, что и с поверхности воды. Влага, испаряюш,аяся из материала с меньшей скоростью, чем с поверхности воды, называется связанной. Влагосодержание материала на границе этих двух форм называется критическим. [c.665]

    П. А. Ребиндер классифицирует влагу по интенсивности ее связи с пористым твердым телом на химически связанную (внутреннюю), адсорбционную (гигроскопическую), капиллярную и свободную (механически связанную и заполняющую пористое пространство). Внутренняя влага, химически связанная с веществом углей, не может быть удалена существующими методами обезвоживания. Гигроскопическую влагу можно извлечь при сушке. Ее содержание составляет в бурых углях до 14 7о, в длиннопламенных 8—10%, в коксующихся 2—4%- Капиллярную и свободную влагу удаляют методами механического и термического обезвоживания. Содержание влаги этих видов равно 4—7%. Она является основной причиной смерзаемости угля при транспортировании и хранении, а также усложняет его классификацию при грохочении. [c.42]

    По классификации академика П. А. Ребиидера, все формы связи капиллярпо-пористых тел с поглощеппой влагой делятся па три большие группы 1) химическая связь 2) физико-химическая 3) физико-мехапическая. Химическая связь характеризуется наибольшей прочностью и совершенно точными соотношениями между количествами сухого материала и ирисоединенной влаги, не изменяющимися нри изменении внешних условий. Присоединение воды происходит в процессах гидратации и кристаллизации (образование кристаллогидратов). Химически связанная влага не удаляется даже нри нагревании материала до 120—150° С. [c.53]

    Количество удерживаемой осадком влаги в значительной мере определяется формой связи влаги с осадком. Классификацию форм связи влаги с осадком основывают [1, 59] на различной интенсивности энергии связи твердой фазы осадка с жидкостью. Вг порядке убывания энергии связи различают химически связанную, физико-химическую связанную (адсорбционную) физико-механически связанную (капиллярную) избыточную или свободную влагу. Физико-химически связанную влагу подразделяют на гигроскопическую, адгезионную, прочно связанную. Капиллярную влагу можно подразделить на влагу макропор, внутриагрегатную, влагу стыковую и влагу микро- [c.71]


    Выбор сушилок связан с проблемой классификации материалов. В настоящее время разрабатывается такая классификация, к-рая позволила бы быстро оценивать кинетику и выбирать наиб, рациональный тип сушилки. Пример-классификация капиллярно-пористых материалов. В соответствии с ней влажные материалы дифференцируют по внутр. структуре, а за ее характеристику принимают критич. диаметр пор т.е. диаметр наиб, тошсих пор, из к-рых требуется удалить влагу до достижения конечного влагосодержания параметр позволяет оценить и выбрать экономически целесообразный суишльный аппарат. [c.487]

    Формы связи воды с твердыми частицами влияют на выбор процессов, используемых для обработки осадков. В соответствии с классификацией влага в осадках по степени увеличения энергии связи с твердыми частицами суспензий подразделяется на избыточную, осмотическую, макро- и микропор При обезвоживании и сушке осадков на ка кдый вид влаги затрачивается определенная удельная энергия. Химически связанная вода входит в состав вещества и не отделяется даже при термической сушке осадков. [c.249]

    В настоящее время воду в торфе подразделяют на химически (U ) и физико-химически связанную (i/фх), воду энтропийной связи (U ) и механического удерживания (Uuex) 12, 3]. На первый взгляд классификация форм связи влаги в торфе, предложенная А. В. Думанским, сохранилась. Но содержание приобрело глубокое физическое, химическое и физико-химическое обоснование. Если раньше оценку категориям влаги давали с позиций способности ее удерживаться в материале при наложении различного рода механических нагрузок, то на современном этапе связь влаги с торфом оценивается энергией взаимодействия ее с твердой составляющей, определяемой химической и физической структурой торфа. [c.48]

    По данным Л.Г. Пирогова, водные свойства осадков определяются такими характеристиками, как общая и активная пористость, удельная поверхность твердой фазы и иловый индекс. В основе методик определения этих характеристик лежит классификация П.А. Ребиндера, основанная на энергетический теории связи воды с твердой фазой. Это дает возможность провести расчет фильтрационных характеристик осадка коэффициента проницаемости, величины объемного сопротивления осадка, коэффициента фильтрации, предельной степени обезвоживания осадка механическими методами. Расчет технологических параметров трех стадий отстаивания, флотации, теоретической производительности вакуум-фильтра и центрифуги, а также теоретический расчет сушилок может осуществляться с использованием разработанных Л.Г. Пироговым рекомендаций и общепринятых методических руководств. Применение указаннрй методики дает возможность также интенсифицировать процессы обезвоживания путем направленного изменения водоотдающих свойств осадка. Изменение структуры осадка должно привести к количественному перераспределению связи влаги в сторону увеличения содержания свободной воды вследствие уменьшения общего количества связанной воды. Такое изменение структуры осадков позволит добиваться более глубокого и быстрого их обезвоживания. [c.23]

    Если воспользоваться предложенной П. А. Ребиндером классификацией различных форм связи воды с материалом, то можно установить, при каких условиях метод газоволюметрии позволяет определить влагу, связанную в том или ином виде. [c.254]


Смотреть страницы где упоминается термин Классификация связанной влаги: [c.88]    [c.566]    [c.212]    [c.48]    [c.212]    [c.212]   
Химия и технология синтетического жидкого топлива и газа (1986) -- [ c.42 ]




ПОИСК





Смотрите так же термины и статьи:

Влага связанная



© 2025 chem21.info Реклама на сайте