Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пористость свободная активная

    Здесь е — доля свободного объема пористой частицы — эффективный коэффициент диффузии яда сг — площадь активной поверхности в единице объема зерна Ря — скорость адсорбции яда, отнесенная к единице активной поверхности. [c.146]

    Типичным для формирования структурно-механического барьера, ограничивающего проникновение фильтрата в пористую среду, является наличие двух фаз структурообразования - быстрой и медленной. В течение первой возникает адсорбционный слой, на второй фазе осуществляется более медленная достройка полимолекулярного граничного слоя, простирающегося на несколько молекулярных порядков, что характерно для адсорбции высокомолекулярных веществ на границе с твердым телом (В.А. Каргин, Ю.С.Липатов). На начальной стадии этот процесс может развиваться одновременно во всем объеме. Макромолекулы при этом могут входить в несколько зон структурообразования, формируя сетку, препятствующую дальнейшему массопереносу. По этой причине перемещение макромолекул носит преимущественно сегментальный характер. Кроме того, в отличие от низкомолекулярных соединений, активные группы или сегменты макромолекул никогда полностью не связываются с адсорбентом часть сегментов закрепляется на поверхности, остальные простираются в объем в виде петель или свободных концов. Вследствие этого на границе раздела фаз создаются предпосылки для создания поверхностного слоя полимера, локальная концентрация в котором отличается от среднего значения по объему. Этому способствуют и селективный характер адсорбции полимеров, являющихся по своей природе полимергомолога-ми, а также особенности адсорбента - пористой среды, радиусы капилляров которой могут быть сопоставимы с размерами макромолекул. Описанные процессы определяют закономерности процесса формирования надмолекулярной структуры жидкости в норовом канале. [c.12]


    В качестве промышленных адсорбентов применяют активные угли и твердые пористые минеральные вещества. Активные угли получают из различных видов органического сырья (древесина, торф, бурые и каменные угли, антрацит, кости животных, скорлупа орехов, косточки плодов и др.) путем их термической обработки без свободного доступа воздуха с целью удаления летучих (влаги, частично смол). Получаемый при этом уголь является крупнопористым, а поры его в значительной степени заполнены смолистыми веществами, поэтому он подвергается активации с целью освобождения имеющихся пор и образования новых. Активация производится либо окислением газом или паром при температурах 850—900 °С, либо обработкой химическими реагентами при температурах до 650 С. В первом случае благодаря [c.615]

    Образовавшаяся серная кислота сульфирует органическую массу, при зтом повышается ее активность к окислению, так как появляются свободные радикалы. Четкая закономерность изменения склонности углей к самовозгоранию от степени их зрелости не установлена. Статистика показывает, что максимальной склонностью к самовозгоранию обладают угли с содержанием углерода (С ) 76, 85 и 89 %. Это соответствует углям марок Д, Ж и ОС. Кроме химического строения, на склонность к самовозгоранию углей влияет также пористая структура. [c.252]

    Нам кажется, что в настоящее время имеются экспериментальные данные, которые говорят в пользу первой точки зрения. Рассмотрим это на примере адсорбции молекул воды на микропористом стекле и различных силикагелях. В работе [4] было показано, что первые порции воды адсорбируются на силикагеле с теплотой адсорбции 17—20 ккал моль. Это показывает, что адсорбция происходит не по механизму водородной связи здесь имеют место связи более сильные, чем водородные. В работе Йетса [5] было показано, что при адсорбции молекул, способных вступить в водородную связь с ОН-группами поверхности, наблюдается значительное уменьшение (сжатие) размеров адсорбента, которое объясняется образованием водородной связи на поверхности. Адсорбция первых порций молекул воды не приводит к уменьшению размеров адсорбента и лишь последующая адсорбция приводит к сжатию. Авторы приходят к выводу, что адсорбция большинства молекул при малых заполнениях происходит без образования водородных связей. Анализ спектров ЯМР [4, 6] также показывает, что в области малых заполнений вода адсорбируется на силикагеле на других более активных центрах. Как было показано в работах Сидорова [7, 8], свободные ОН-группы поверхности пористого стекла не являются центрами адсорбции по отношению к молекулам воды и вода на дегидратированной поверхности адсорбируется на каких-то других центрах, названных (в отличие от ОН-групп) центрами второго рода. При этом наблюдалась полоса 3665 см , пе исчезающая вплоть до 300— 450 С. [c.180]


    Исследование диффузии в инертных, не адсорбирующих красители пористых материалах показало, что в том случае, когда диффузионный процесс сдерживается только стерическими препятствиями, кажущийся (О) и истинный ( >о) коэффициенты диффузии различаются между собой в 100—1000 раз. Если же-перемещение молекул красителя в порах волокна тормозится еще и действием сил притяжения их активными центрами макромолекул волокна, то разница в значениях О и Оо увеличивается до 10 —10 раз. Это означает, что при уменьшении К (иными словами, при ослаблении эффективности взаимодействия молекул красителя с активными центрами волокна) значение кажущегося коэффициента диффузии возрастает на несколько порядков и приближается к значению коэффициента свободной диффузии красителя в растворе в субмикроскопических порах волокна Оо. [c.63]

    Для характеристики активного угля важен коэффициент е, равный доле пустот в слое и называемый коэффициентом свободного объема. Этот коэффициент может быть определен следующим образом объем 1 г пористого [c.30]

    Пропорциональность коэффициента диффузии диаметру капилляра является следствием активной роли стенок в процессе массопереноса. Границы кнудсеновской области зависят от давления при обычных давлениях преимущественная роль кнудсеновской диффузии выявляется при диаметре пор меньше 10 А с повышением давления эта граница, вследствие уменьшения длины свободного пробега, сдвигается в сторону меньших диаметров. Перенос тепла в пористой частице осуществляется как за счет молекулярной диффузии в порах, так и за счет теплопроводности самой частицы. Часто пористую частицу рассматривают как однородную среду, вводя эффективные коэффициенты диффузии и теплопроводности, определяемые экспериментально. Особенности макрокинетики процессов тормозящихся диффузией реагентов в порах катализатора, будут описаны в п. 3. , [c.117]

    Большинство каталитически активных металлов, как указывалось выще, представляет собой элементы VI и VIII групп Периодической системы элементов Д. И. Менделеева (хром, молибден, вольфрам, железо, кобальт, никель, платина и палладий). В некоторых случаях сульфиды и окислы этих металлов в свободном состоянии (без носителей) обнаруживают кислотные свойства. Примером может служить дисульфид вольфрама, обладающий каталитической активностью в реакциях гидроизомеризации, гидрокрекин" га и насыщения кратных связей. Так как серосодержащие соединения присутствуют практически в любом сырье, следует применять серостойкие катализаторы — сульфиды металлов. В большин-, стве современных процессов в качестве катализаторов используют кобальт или никель, смешанные в различных соотношениях с молибденом, на пористом носителе (окиси алюминия). Иногда применяют сульфидный никельвольфрамовый катализатор. [c.215]

    При необходимости учета больших отклонений реальной структуры активных слоев от модели прибегают к эмпирическим соотношениям типа (6.7). Характер диффузии газа в пористой среде трехфазных электродов определяется соотношением размера пор и длины свободного пробега молекул газа (см. главу 1). При / >/г газ перемещается как непрерывная вязкая среда при имеет место так называемый кнудсеновский режим, когда перенос газа определяется в основном столкновением молекул со стенками пор и поэтому различные компоненты газовой смеси переносятся независимо. Согласно работе [261], при атмосферном давлении в порах с г<10 нм течение кнудсеновское, в порах с г>10 нм течение вязкое. Поэтому в случае углеродных электродов, для которых характерны указанные размеры пор, кнудсеновский режим может иметь важное значение [262, 263]. [c.224]

    Вместе с тем следует сделать одно весьма важное для нашего обсуждения замечание. Избыточная свободная энергия твердого тела может служить мерилом его способности к спеканию лишь в том случае, если тело сохраняет запас ДО - при температурах, близких к температурам спекания. Между тем в зависимости от химической и термической предыстории материала процессы спекания совершаются с различной скоростью. Может оказаться, что окисел или феррит, который в момент образования имеет максимальный запас ДО , совершенно непригоден для получения бес-пористых материалов, так как его структура упорядочивается при умеренных температурах нагрева. Очевидно, что для сознательного регулирования керамической структуры ферритов и обусловленных ею структурно-чувствительных магнитных свойств необходимо более глубоко исследовать природу активного состояния ферритовых порошков и найти пути получения достаточно активных к спеканию материалов. Чтобы решить эту задачу, целесообразно исследовать генетическую связь [c.38]

    Рассмотрены вопросы термодинамики адсорбции бинарных растворов неэлектролитов по методам Гиббса и полного содержания. Описано вычисление термодинамических функций адсорбционных растворов. Приведены результаты расчетов свободных энергий смачивания для случая адсорбции растворов неэлектролитов на пористом стекле и на активном угле. [c.158]


    Существенное влияние на кислотно-основное равновесие оказывает пористость К. с. Значительно большее содержание в пористых и макропористых К. с. свободной воды по сравнению с гидратационной повышает активность ионов в фазе геля и увеличивает скорость сорбции и установления равновесия. [c.495]

    Критич. зародыши образуются на активных центрах пов-сти электрода. Такими центрами м. б. поры в оксидной пленке, выходы винтовых дислокаций, вакансии, изломы на ступенях роста и др. энергетич. неоднородности пов-сти. Число активных центров, участвующих в процессе электрохим. нуклеации, возрастает с увеличением Г). Вокруг возникшего и растущего криста ша образуются зоны экранирования ( дворики роста ), в к-рых нуклеации не происходит. Радиус зон экранирования уменьшается с ростом л. Постепенно происходит исчерпание числа свободных активных центров и прекращение з ождения новых кристаллов, наступает насыщение. Адсорбция примесей из р-ра на электроде снижает число активных центров и, соотв., общее число зародышей. Стадия зарождения кристаллов определяет в конечном итоге осн. физ.-мех. св-ва гальванич. покрытий, в т. ч. их пористость. [c.430]

    Повторное взаимодействие высокодисперсного ориентированного полимера с адсорбционно-активной средой было подробно рассмотрено в [125]. В этой работе образцы ПЭТФ растягивали в ААС до заданной степени удлинения, после чего удаляли из пористой структуры активную жидкость. Часть образцов высушивалась в свободном состоянии, а часть —с фиксированными размерами. После удаления н<идкости полученные образцы снова погружали в адсорбционно-активную жидкость, не способную, очевидно, вызывать истинного, объемного набухания полимера. На рис. 2.19 показана зависимость относительного изменения массы образцов ПЭТФ от времени их контакта с активной жидкостью. Прежде всего следует отметить способность образцов поглощать значительные количества н-пропанола увеличение массы образцов в отдельных случаях достигает 40 % от массы исходного полимера. Это может показаться неожиданным, поскольку весовым методом, использованным в данной работе, не удается зарегистрировать заметного поглощения н-пропанола при выдерживании в нем блочного недеформированного ПЭТФ даже в течение 1 мес. Однако наблюдаемое явление легко понять, если рассматривать его как процесс пептизации, разобщения скоагулировавших структурных элементов с последующим заполнением жидкой средой имеющихся микропустот. [c.65]

    Из предыдущего видно, что мы не разделяем полностью ни точки зрения большинства американских геологов, считающих кероген промежуточным веществом на пути превращения органического вещества в нефть, ни точки зрения, развитой Меррэем Стюартом, считающим, что органическое вещество превратилось в нефть прежде его погребения и что процесс образования свободной нефти есть процесс нарушевия прилипания нефти к глинистым частицам и выжимания ее в пористую породу. Мы полагаем, что нефтеобразование, начавшись с разложения жиров в биогенном иле до его погребения, продолжалось и после его погребения при активном содействии анаэробных бактерий во весь период диагенетического изменения породы. Все эти взгляды нуждаются в дальнейшем их уточнении и экспериментальной проработке в лаборатории и увязке их с полевыми наблюдениями. Особенно важными мы считаем исследования по дальнейшему выяснению роли анаэробных бактерий в процессах нефтеобразования. [c.349]

    При исследовании макрокинетики химических реакций в пористом зерне нерационально рассматривать процесс в отдельной поре. Поры реальной частицы катализатора неодинаковы по размеру и, пересекаясь друг с другом, образуют запутанную сеть более того, форма свободного объема частицы может напоминать скорее совокупность каверн неправильной форшл, чем сеть капилляров. Поэтому пористое зерно рационально рассматривать как квазигомогенную среду, характеризуя скорость диффузии реагентов эффективным коэффициентом диффузии О, а скорость химической реакции — эффективной кинетической функцией г С, Т). Последняя выражает зависимость скорости реакции в единице объема пористого зерна от концентраций реагентов и температуры в данной точке объема зерна и связана со скоростью реакции на единице активной поверхности р соотношением г = ар (С, Т). [c.100]

    МЕМБРАНЫ ЖЙДКИЕ, полупроницаемые жидкие пленки или слои, обеспечивающие селективный перенос в-в в процессе массообмена между жидкими и (или) газообразными фазами. Различают свободные, импрегнированные и эмульсионные М. ж. Свободные М. ж,-устойчивые в гравитац. поле слои жидкости, отличающиеся по плотности от разделяемых ими фаз, напр, слой орг. жидкости, расположенный под водными р-рами в обоих коленах и-образной трубки. Импрегнированные М. ж. представляют собой пропитанные жидкостью пористые пленки (полипропиленовые, полисуль-фоновые, политетрафторэтиленовые и др.) или волокна (полипропиленовые, полисульфоновые). Эмульсионные М. ж,-стабилизированные ПАВ жидкие слои, отделяющие капельную фазу от сплошной в эмульсиях типа вода-масло-вода нли масло-вода-масло. Толщина свободных М. ж., как правило, св. 1 мм, импрегнированных 10-500 мкм, эмульсионных 0,1-1,0 мкм. М. ж. могут быть одноко шонентными и многокомпонентными. Первые являются для проникающего через М. ж. в-ва лишь более или менее селективным р-рителем, осуществляют пассивный перенос. Многокомпонентные М. ж. обычно содержат хим. соединения-переносчики, растворенные в мембранной жидкости и способные избирательно связывать и переносить через мембрану диффундирующее в-во (индуцированный либо активный транспорт). Перенос в-в через М. ж. может протекать в режиме диализа и электродиализа (движущая сила процесса-градиент хим илн электрохим. потенциала по толщине мембраны, см. Мембранные процессы разделения ). [c.31]

    Нефти различных месторождений и даже одного и того же месторождения по составу и физическим свойствам сильно различаются между собой (табл. 1), но всем нефтям в большей или меньшей степени присуща поверхностная активность. Еще в начале 40-х годов М. М. Кусаковым, П. А. Ребиндером, К. Е. Зинченко [88], а затем Ф. А. Требиным [178] было установлено, что фильтрация нефти в пористой среде сопровождается некоторым уменьшением расхода. Это явление указанные исследователи объясняли образованием на поверхности поровых каналов адсорбционных слоев полярных компонентов нефти, изменяющих молекулярную природу твердой поверхности и являющихся базой для формирования коллоидизированных граничных слоев нефти, отличающихся по реологическим свойствам от нефти, находящейся в свободном объеме. В результате этого явления уменьшается сечение фильтрационных каналов пористой среды и снижаются ее проницаемость и нефтеотдача. [c.5]

    Все эти недостатки существующих методов систематического анализа заставили Н. А. Тананаева подробно разработать капельный метод на бумаге или на пористых пластинках и дробный метод в полуми-кропробирках. В дробном методе важную роль играет выделение катионов из раствора в виде металлов. Это осуществляется с помощью свободных металлов. Последние можно использовать соответственно порядку расположения их в электрохимическом ряду напряжений магний, алюминий, цинк, железо, олово, медь. Магний и алюминий позволяют вытеснить большинство металлов из раствора. Однако удобнее применять цинк как менее активный металл, вытесняющий в солянокислой среде ртуть, серебро, медь, мышьяк, сурьму, висмут, олово. Выделив эти металлы, можно, например, дробным путем обнаруживать кальций в виде оксалата. [c.151]

    Проведенные за последние 10 лет измерения активной поверхности насадки методами 5 и 6 (см. стр. 440) позволяют пользоваться при расчете Рр (или к,) зависимостями, полученными при возгонке нафталина при испарении жидкостей с поверхности пористых насадочных тел величину находят, как описано на стр. 446 сл. При этом необходимо внесение некоторых поправок. Шулмен [134] учитывает уменьшение свободного объема насадки умножением значения для неорошаемой насадки на [c.465]

    Поверхностно-активные кислотные композиции. Для повышения эффективности в состав композиций для СКО рекомендуется вводить добавки, снижающие поверхностное натяжение (ПАВ, спирты и другие кислородсодержащие соединения). Введение ПАВ в солянокислотные составы способствует снижению скорости реакщ и с карбонатной породой. ПАВ препятствует образованию эмульсий в пористой среде и свободном объеме [182]. ПАВ увеличивают способность составов проникать в низкопроницаемые пласты, улучшают их нефтеотмьшающие свойства [183-186]. Предложены также кислотные составы, включающие лигносульфонаты и вещества, снижающие поверхностное натяжение (водорастворимые алифатические спирты, гликоли или глицерин [179,187], флотореагент Т-66 или Т-80 [188], НПАВ [189] и смесь НПАВ с спиртосодержащими отходами производства [191,190]). Применение гидрофобизаторов в кислотных составах для ОПЗ скважин в карбонатных коллекторах также повышает эффективность повторных кислотных обработок [192-194]. [c.36]

    Создание катализатора с оптимальной пористой структурой — весьма сложная задача, легче всего она может быть решена па ранних стадиях его приготовления. Явление внутридиффузионного торможения приводит к тому, что не весь объем зерна катализатора участвует в реакции. Толш ина работаюш его слоя может быть определена путем сопоставления удельных каталитических активностей в кинетической и диффузионной областях. В условиях промышленг ной эксплуатации катализаторов чаще всего используется не более 20—40% объема зерна каталцзатора. Из этого следует, что для снижения влияния внутридиффузионного торможения необходимо увеличивать геометрическую поверхность катализаторов. Наиболее простым способом такого увеличения является уменьшение размеров зерна катализатора. Однако это приводит к возрастанию сопротивления слоя катализатора, так как оно обратно пропорционально доле свободного объема в третьей степени. [c.96]

    Окатов [33] изучает формирование пористости силикагеля в зависимости от концентрации ЗЮа и свободной кислоты в золе, температуры застудневания, пропитки геля активирующими растворами некоторых электролитов (сернокислого натрия и аммиака) и др. Приведенные в работе данные позволяют сделать более или менее определенные выводы относительно влияния двух факторов концентрации кремнекислоты и действия электролитов. Первый из них не отражается на адсорбционной емкости силикагеля, второй существенно ее повышает. Так, аммиак, введенный в гель в большем количестве, чем это необходимо для нейтрализации свободной кислоты, увеличивает активность ксерогеля вдвое. Такое влияние электролита, по мнению Окатова, объясняется ускорением дегидрата- [c.11]

    Активирово-нные угли получают нагреванием древесины, каменных и бурых углей, антрацита и некоторых других углеродсодержащих веществ в бескислородной среде. При этом из пористой структуры таких веществ испаряются летучие смолистые вещества, она становится свободной и способной адсорбировать тот или иной целевой компонент (происходит процесс активации исходного углеродсодержащего материала). Изготавливаются и используются активные угли в форме гранул размером 2-5 мм. Для проведения процессов адсорбции из жидкофазной среды активные угли обычно измельчаются до порошка с размерами частиц не менее 0,15 мм. Так называемые газовые угли имеют большие объемы микропор, умеренно развитую переходную пористость и применяются для улавливания примесей [c.509]

    Общие свойства изотерм адсорбции любого вида - начало кривых из точки с нулевыми координатами и стремление всех изотерм к горизонтальной асимптоте при больших значениях концентрации компонента в окружающей среде. Первое свойство соответствует тому очевидному факту, что в отсутствие целевого компонента в окружающей среде (С = О, р = 0) при равновесии с такой свободной от компонента средой адсорбент не может содержать какого-либо количества компонента (а = 0). Второе общее свойство всех изотерм означает, что любой адсорбент, какой бы развитой ни была поверхность его пористой структуры, все же имеет конечное количество потенциально активных центров адсорбции, которые могут принять и удерживать молекулы адсорбирующегося вещества поэтому даже при больших значениях С, кг/м , равновесное содержанрхе компонента в конкретном адсорбенте не может превышать некоторого предельного содержания а р, соответствующего заполнению всех вакантных активных центров молекулами адсорбируемого вещества. [c.512]

    Микроструктуру скелетного никеля детально исследовали Андерсон и сотр. [179—182] и Фуйо и др. [176], используя ряд методов, в том числе электронную микроскопию, дифракцию рентгеновских лучей и адсорбцию газов. Данные сканирующей электронной микроскопии показывают, что большая часть поверхности никеля покрыта кристаллитами байерита, что, несомненно, препятствует спеканию никеля. Доля поверхности никеля, свободной от байерита, меняется в интервале 55—85% при обычных способах получения образцов, и количество байерита тем больше, чем более разбавлена щелочь, используемая для выщелачивания. Количество байерита уменьшается также в результате продолжительной экстракции свежим раствором щелочи. Тем не менее изменение доступной поверхности никеля плохо коррелирует с изменением каталитической активности, и практически нет смысла пытаться свести к миниму.му количество остаточного байерита. В основном частицы никеля весьма велики (>100 нм), но они состоят из более мелких кристаллитов размером 2,5—15 нм и образуют пористую структуру с рыхлой упаковкой без какой-либо преимущественной ориентации. Общая поверхность образцов несколько меняется в зависимости от условий их получения. Низкотемпературное ( 320 К) выщелачивание благоприятствует сохранению высокой удельной поверхности (80—100 м /г) и более мелких пор. Средний диаметр пор образцов разного происхождения составляет 2,6—12,8 нм, и имеются некоторые данные о бимодальном распределении пор по размерам [182]. Наблюдается тенденция к блокировке некоторых пор байеритом. [c.239]

    Другое направление ставит своей задачей создание так называемых свободно дышащих угольных электродов, которые работают без перепада давления. Развитая зона контакта трех фаз в таких электродах создается и сохраняется только за счет гидрофобных свойств угля. Наиболее существенные результаты связаны с развитием работ в области металло-воздушных источников тока во второй половине 70-х годов. Основными составными частями этих электродов (рис. 96, в—д) являются токоподвод (металлическая сетка или пористая лента), неактивный гидрофобный слой, играющий роль гидрозапорного, и частично гидрофобный активный слой, содержащий угольный катализатор. [c.220]

    При анализе процесса на крупногранулированном цеолитсодержащем катализаторе, принимая во внимание наличие двух каталитических систем (матрица и наполнитель), различающихся активностью и пористой структурой, традиционные методы расчета транспорт -ных явлений в зерне оказываются неприменимыми [55 -573, Известно, [58], что большинство исследователей различных процессор рассматривают пористую струк -туру зерна как неоднородно равномерную и представ -ляют модель как квазигомогенную, относя константу скорости к единице объема и пользуясь понятием эффективного коэффициента диффузии. Модель зерна цеолитсодержащего катализатора требует [56,57]усложнения с учетом того, что общую пористость зерна следует рассматривать как сумму долей свободных объе -MOB, приходящихся на долю матрицы и наполнителя. Принимая, что матрица и наполнитель являются однородно-пористыми и диффузия в порах протекает по кнудсеновскому механизму, авторы работы [57] приходят к выводу, что при соотношении долей свободных объемов матрицы и наполнителя, близком к 15j диффузионный поток в порах матрицы должен превышать поток в порах наполнителя приблизительно в 60 раз, а также к тому, что общий подвод вещества к внутрен -ней поверхности цеолитсодержащего катализатора определяется транспортом вещества в порах матрицы. [c.35]

    Состояние воды, поглощенной ионитом, сходно с ее состоянием в водных растворах электролитов. Как показал Самуэльсон [100, 102, 104], противоионы в сульфированном иолистирольном ионите распределены во всем его объеме. Это значит, что в случае эластичных смол нельзя говорить о свободном объеме пор, содержащем чистую воду это понятие имеет смысл лишь для пористых ионитов с жесткой структурой, например для цеолитов. Набухший ионит можно рассматривать как систему, в которой обменные группы и соответствующие противоионы растворены во впитавшейся в ионит воде. Целесообразно поэтому рассматривать внутренний раствор набухшего ионита как особую фазу (фазу ионита) и вычислять концентрации и активности ионов в этой фазе точно таким же образом, [c.41]

    В жидкостно-адсорбционной хроматографии наряду с поверхностными свойствами адсорбента на результаты разделения оказьшает влияние и пористость его структуры. Удельная поверхность определяет емкость адсорбента. Для удовлетворительного разделения достаточно, чтобы адсорбент имел поверхность 50 м /г. Но возможно хорошее разделение и при меньшей поверхности. В частности, поверхностно-пористые материалы, находящие все более широкое применение в жидкостной хроматографии, имеют уде,льную поверхность 0,65-14,0 м /г [6]. Это позволяет провести хроматографическое разделение с высокой эффективностью, но из-за малой емкости таких адсорбентов приходится работать с очень малыми пробами и соответственно с высокочувствительными детекторами. Удельная поверхность не определяет селективность адсорбента. В самом деле, с увеличением поверхности адсорбента увеличивается количество адсорбированного вещества, но для всех веществ это изменение будет одинаковым, и поэтому селективность не изменится. Размер пор сильнее влияет на свойства адсорбента. Относительная доля свободных и реактивных гидроксильных групп на поверхности силикагеля тесно связана с размером пор адсорбента. Широкопористый силикагель имеет большую долю свободных ОН-групп, а поверхность узкопористого силикагеля покрыта в основном реактивными и связанными гидроксильными группами. Это различие в структуре поверхности узко- и широкопористых силикагелей достаточно, чтобы повлиять на относительную адсорбцию различных соединений. Линейная емкость силикагеля и ее изменение в процессе дезактивации также зависят от размера пор адсорбента (см. рис. 5 . Объясняется это тем, что поверхность узкопористых силикагелей более гетерогенна, и поэтому, несмотря на большую удельную поверхность адсорбенты этого типа обладают меньшей линейной емкостью. Добавление воды к активным образцам быстро делает поверхность широкопористого силикагеля однородной линейная емкость узкопористых силикагелей повышается в процессе добавления дезактиватора. [c.24]

    Ограниченная диффузия возникает, если молекулярная диффузия в порах матрицы затруднена из-за экранирования подхода макромолекул к прикрепленному аффинному лиганду. Экспериментально вклад этой диффузии можно определить с большим трудом, но для аффинной хроматографии на очень пористых носителях эти трудности становятся минимальными. На практике для достижения равновесных условий желательно, чтобы скорость потока была по возможности низкой. Например, при скорости потока 400 мл/ч для выделения стафилококковой нуклеазы на колонке объемом 20 мл небольшие количества нуклеазы появлялись в первом пике вместе с белковыми примесями, особенно если общая концентрация белков в образце была высока (20—30 мг/мл) [5]. Однако даже при такой высокой скорости потока нуклеаза полностью сорбировалась, если наносился менее концентрированный образец. Зависимость связывания лактатдегидрогеназы на №-(6-аминогексил)-5 -АМР — сефарозе от скорости потока пссле-дована Лоу и др. [21]. Было найдено, что увеличение скорости потока относительно мало влияет на сорбцию. При высоких скоростях потока эффективность колонки (ВЭТТ), а также связываемость р уменьшаются. Влияние скорости потока более заметно в небольших колонках, с которых часть белка с ферментативной активностью элюируется со свободным объемом. Влияния концентрации инертного белка (бычьего сывороточного альбумина) при высоких скоростях потока (67 мл/ч) также не обнаружено. [c.84]

    Наиболее изящный метод определения величины частиц коллоидных систем заключается в использовании дифракции рентгеновских лучей, падающих под малыми углами, и в переносе на силикаты методов исследования целлюлозы . Эта теория несколько отличается при применении ее к системам с плотно упакованными частицами, имеющими лишь малые межчастичные свободные пространства, и к разбавленным коллоидным золям . Шал, Элкин и Росс показали, что такой метод можно применять к кремнезему или к смесям гелей кремнезема и глинозема для определения их пористости, что важно как мера адсорбции газа при низкой температуре (см. С. I, 7 и ниже) и для явлений капиллярной конденсации (см. А. III, 155 и ниже). Эта особая область применения методов дифракции рентгеновских лучей до сих пор интенсивно развивается, и в ней заложены перспективы для решения проблем, связанных с изучением силикатов, особенно систем вода — глина и подобных материалов, обладающих высокой активной поверхностью. Для практического применения метода малых углов прибор с двумя кристаллами, описанный Фаикухеном и Еллине-ком2, может оказаться особенно полезным он имеет две отражающие кальцитовые пластинки на пути для резко сфокусированного главного рентгеновского луча. Эти авторы изучали у-глинозем, нагретый при различных тем- [c.273]


Смотреть страницы где упоминается термин Пористость свободная активная : [c.24]    [c.87]    [c.24]    [c.64]    [c.308]    [c.96]    [c.276]    [c.662]    [c.287]    [c.35]    [c.460]    [c.419]    [c.303]    [c.163]    [c.48]    [c.126]   
Гидродинамические и физико-химические свойства горных пород (1977) -- [ c.14 ]

Гидродинамические и физико-химические свойства горных пород (1977) -- [ c.14 ]




ПОИСК







© 2025 chem21.info Реклама на сайте