Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Природа и энергия ионных связей

    Алкилбензолы могут реагировать с галогенами двумя различными путями. В разд. 2.5.6 были уже рассмотрены ионные реакции. В радикальных реакциях стадия, определяющая природу продукта, почти всегда представляет собой отрыв атома, причем, как правило, более предпочтителен отрыв одновалентного атома, а не атомов высшей валентности. Так, этан реагирует с атомами хлора, образуя первоначально этильный радикал, а не атом водорода. Бензол не вступает в эту реакцию, поскольку связь С—Н имеет более выраженный 5-характер (С2ар2—Ни), чем в алкане, и вследствие высокой прочности связи Н° = 468,72 кДж/моль) отрыв водорода атомом хлора является сильно эндотермической реакцией (АЯ° = 37,7 кДж/моль). Так же как и в условиях ионной реакции, существует возможность присоединения к аренам и в том случае, когда генерируются радикалы. Например, хорошо известно присоединение хлора к бензолу. В результате образуется смесь изомеров один из них, так называемый 7-изомер ГХЦГ у 1,2,3,4,5,6-гексахлорциклогексан), ранее широко исиользовался как инсектицид. Присоединение атомов хлора к кольцу, например в толуоле,— обратимый процесс, тогда как отрыв водорода — необратимый. Так, при фотохлорировании толуола образуется бензилхлорид, однако при низких температурах и высоких концентрациях хлора проходит в значительной степени присоединение к кольцу. Бромирование толуола при умеренном освещении или в присутствии пероксидов протекает эффективно и дает бензилбромид. Вследствие низкой энергии связи бензил — водород (/)Я° = 355,72 кДж/моль) отрыв водорода атомом хлора становится экзотермическим процессом (АЧ° = —75,3 кДж/моль). Исходя из энергии диссоциации связи (ОИ°), для образования бензильнОго радикала из толуола требуется на 79,5 кДж/моль меньше энергии, чем на образование метильного радикала из метана. [c.388]


    Кроме длины и энергии важными характеристиками химической связи являются насыщаемость и направленность. Однако эти свойства присущи лишь ковалентной связи. Ионная связь, природа которой обусловлена ненасыщенным и пространственно симметричным электростатическим полем центрального иона, ненасыщена и не имеет какого-либо определенного направления. Насыщаемость ковалентной связи выражается в ограничении числа валентных связей, которые может дать данный атом. Например, азот притягивает три атома водорода с образованием молекул ЫНз, молекул же МН4, ЫН5 и т. д. не существует. Согласно квантово-механическим соображениям в образовании связи могут участвовать только неспаренные электроны атома число их определяет валентность элемента. В простых случаях число неспаренных электронов в атоме находится с помощью принципа Паули и правила Гунда, в более сложных рассматривается возможность гибридизации волновых функций. Направленность связей объясняет стереохимию молекул, которая начала развиваться после того как Ле-Бель и Вант-Гофф (1874) выдвинули важнейший тезис о тетраэдрическом расположении валентностей углерода. [c.18]

    При увеличении числа связей, образуемых данным ионом металла с соседями, возрастает прочность металла и повышается энтальпия испарения (сублимации). Полинг, рассматривавший структуры решеток металлов с позиций теории ВС, отметил, что прочность металлов возрастает при переходе от металлов, имеющих малое число валентных электронов, к металлам переходного характера с его точки зрения металлы, имеющие частично незаполненные d-зоны, располагают большим числом электронов для осуществления межионных связей, а потому и должны быть прочнее. Энтальпия сублимации, отнесенная к одному электрону, действительно изменяется в ряду металлов от I до V группы таким образом, что ее максимальное значение приходится на титан, цирконий и гафний, а энергия, отнесенная к одному электрону, колеблется в пределах 84—168 кДж/моль, что близко к обычным энергиям химической связи. Необходимо, конечно, учитывать, что распределение энергии по большему числу связей скажется на падении ее значения на одну связь. Значение энтальпии испарения металлов имеет, в общем, тот же порядок, что и у ионных кристаллов, однако проводить сравнения трудно из-за влияния природы анионов. Соответствующие значения для хлоридов калия, натрия, магния лежат в пределах 125—168 кДж/моль, а энтальпия испарения металлического натрия равна 100,3. [c.285]


    Ионная, или электростатическая связь (рис. 3.2, в) образуется в случае полного переноса связывающих электронов к более электроотрицательному атому, который становится в результате этого отрицательным ионом - анионом с зарядом, равным количеству перенесенных электронов. Менее электроотрицательный атом теряет соответствующее количество электронов и становится положительным ионом - катионом. По существу, это предельный случай полярной ковалентной связи, который может реализоваться лишь при взаимодействии атомов, очень сильно отличающихся по электроотрицательности, например в 1лГ, СаРг, ВаО. Однако, строго говоря, даже в таких соединениях электроны не полностью переходят с катионов на анионы, а некоторая часть электронной плотности остается делокализованной между ними. Такую связь правильнее рассматривать как преимущественно ионную с малой примесью ковалентности. Ионная связь имеет электростатическую природу это значит, что она не имеет определенного направления в пространстве и ионные соединения не состоят из отдельных молекул, а образуют трехмерные пространственные кристаллические структуры, в которых соотношение между количеством катионов и анионов определяется их зарядами, а взаимное расположение - соотношением радиусов. Энергия ионной связи может быть легко рассчитана по закону Кулона, если известны заряды и радиусы ионов и тип кристаллической решетки. Подробнее об ионных кристаллах - см. разд. 6.3. [c.45]

    Эти доводы можно представить себе в более ясной форме при более точном рассмотрении природы частично образованной связи С—2 в переходном состоянии. Такие частично образованные связи между углеродом и электрофильным атомом или группой 2 должны были бы иметь более сильно выраженный ионный характер с меняющейся долей участия в ковалентной связи, в зависимости от природы реагента. Сильно электрофильный реагент Ъ будет требовать низкой энергии активации, и С—Ъ связь будет по характеру сильно ионной. Такая связь будет требовать лишь незначительного участия электронов заместителя в кольце. Следовательно, заместители будут проявлять только слабое направляющее влияние на входящие группы. [c.426]

    Применимость метода валентных связей к интерпретации экспериментальных данных пока все еще весьма ограничена. Этот подход позволяет, однако, значительно лучше понять физическую природу связи в соединениях инертных газов. Распределения заряда в основном состоянии фторидов ксенона, найденные как методом МО, так и методом ВС, весьма близки. Оба метода предсказывают значительное смещение заряда от ксенона к фтору. В методе МО этот результат обусловлен низким потенциалом ионизации (т. е. кулоновским интегралом) центрального атома инертного газа [14, 19]. В методе ВС определяющими являются ионные структуры действительно, ионные структуры Г Хе" —Р и Г—Хе+Р" вполне устойчивы [30]. Электростатическая энергия образования Хе Р (приближенно равная /хе —Лр —= 1,7 эв), по-видимому, возмещается энергией образования связи Хе+—Р [30]. Это общее соображение показывает важность низкого потенциала ионизации центрального атома, электроотрицательности лигандов и небольших размеров лигандов при образовании соединений инертных газов. Преимущество фтора по сравнению с другими галогенами обусловлено не только величиной его сродства к электрону, но и меньшими его размерами [30]. К сожалению, в настоящее время нельзя сделать более обоснованных заключений. [c.55]

    С угловым Орбитальным моментом. Химическая связь образуется при таком распределении электронной плотности, при котором энергия притяжения превышает энергию отталкивания. В сказанном нет ничего нового, мы лишь хотим сохранить перспективу при рассмотрении природы Н-связи квантовая механика утверждает, что начала всех связей заключены в одном и том же волновом уравнении. Из этого рассуждения следует, что волновое уравнение при взаимодействии А — Н (т. е. X) и В (т. е. У) не содержит особых членов, когда невозмущенная связь А — Н имеет несимметричное распределение зарядов. Даже если бы эксперимент обнаружил, что Н-связь не имеет места, когда в распределении зарядов в группе А — Н нет асимметрии, можно быть уверенным, что это происходит не потому, что в уравнение добавляются члены, возникающие из асимметрии. Итак, мы можем ожидать исчезновения ионной связи, когда наступит золотой век химической теории. В век точных волновых функций все проблемы структуры молекул будут решаться счетной машиной с одной единственной программой вычисления. Не дольше просуществует и разделение молекул на классы, которое необходимо для различных приближенных методов. [c.197]

    Метод ВС позволяет понять способность атомов к образованию определенного числа ковалентных связей, объясняет направленность ковалентной связи, дает удовлетворительное описание структуры и свойств большого числа молекул. Однако в ряде случаев метод ВС не может объяснить природу образующихся химических связей или приводит к неверным заключениям о свойствах молекул. Так, согласно методу ВС, все ковалентные связи осуществляются общей парой электронов. Между тем, еще в конце XIX века было установлено существование довольно прочного молекулярного иона водорода энергия разрыва связи составляет здесь 256 кДж/моль. Однако никакой электронной пары в этом случае образоваться не может, поскольку в состав иона Hj входит всего один электрон. Таким образом, метод ВС не дает удовлетворительного объяснения существованию иона. Далее, образование молекулы кислорода О2 описывается методом ВС как результат создания двух общих электронных пар. Согласно такому описанию, молекула О2 не содержит неспаренных электронов. Однако магнитные свойства кислорода указывают на то, что в молекуле О2 имеются два неспаренных электрона. [c.105]


    Сравнение ионов внутренней и внешней обкладок показывает их существенное различие первые характеризуются химической определенностью (это — ионы, образующие данную решетку или изоморфные с ней) и прочно связаны с каркасом решетки химическими связями. Ионы внешней обкладки могут быть любыми по своей природе, поскольку кулоновские силы не специфичны, и единственным требованием является условие равенства абсолютных величин зарядов в обоих обкладках, иначе говоря, условие электронейтральности всей системы в целом . Энергия взаимодействия этих ионов с твердой фазой оказывается значительно меньше, чем энергия химических связей в твердых телах. Она имеет порядок единиц ккал/моль, а следовательно, по уравнению (IX. 31) противоионы обладают значительной подвижностью. Они непрерывно обмениваются с ионами, находящимися в растворе и, если раствор содержит несколько компонентов, заряженных одинаково, то нет причины ожидать, что освободившееся место во внешней обкладке займет такой же ион, а не ион другого вида (с зарядом того же знака). [c.183]

    II.1.1.2. Природа и энергия ионных связей [c.50]

    Способность К электролитической диссоциации зависит к )/< от природы растворенного вещества, так и от природы растворителя в связи с тем, что возможность диссоциации молекулы на ионы определяется как характером и прочностью связи и молекуле, так и прочностью образующихся сольватов, т. е. энергией сольватации. [c.94]

    Природу ионной связи, структуру и свойства ионных соединений можно объяснить с позиций электростатического взаимодействия ионов. Способность элементов образовывать простые ионы обусловлена электронной структурой их атомов. Эту способность можно оценить величиной энергии ионизации и сродства атомов к электрону. Понятно, что легче всего образуют катионы элементы с малой энергией ИОНИЗЯИ.ИИ -Ц- тттрлпцнпчрмрлкныо металлы. Об- [c.86]

    В целом материалы этой главы свидетельствуют о том, что недиссоциированные молекулы электролитов, так же как и ионы, взаимодействуют с молекулами растворителей. При взаимодействии образуются продукты присоединения определенного состава, который зависит от природы растворенного вещества и растворителя. Важную роль в образовании этих продуктов присоединения играет водородная связь. Энергия сольватации молекул меньше энергии сольватации ионов и в значительной степени зависит от энергии водородных связей. Изменение энергии молекул при переходе из среды в среду может быть оценено с помощью нулевых коэффициентов активности. [c.264]

    Процессы фрагментации молекулярных ионов характеризуются значительным числом последовательных и конкурирующих направлений распада, вероятность которых определяется природой молекулы и элементов, ее составляющих, энергией разрывающихся связей, внутренней энергией образующихся [c.9]

    Водородные связи. Существующие точки зрения на природу водородных связей основываются главным образом на двух ее теоретических трактовках - электростатической и донорно-акцепторной. Электростатическая модель, предложенная Полингом в 1928 г., основывается на принципе Паули, валентной схеме химической связи и классическом правиле валентности, согласно которым атом водорода, обладающий единственным Is электроном, не может образовывать более одной ковалентной связи [115]. Отсюда делается вывод, что возникновение водородного связывания обусловлено ионными силами. Экспериментально эта аргументация подтверждается тем, что прочная водородная связь в системе RXH...YR образуется в том случае, когда X и Y -наиболее электроотрицательные атомы (F, О и др.). Расчеты различных вариантов модели с точечным распределением зарядов приводили к величинам энергии Н-связи, совпадающим с опытными значениями [116-119]. [c.122]

    Учитывая существующие различия в природе и свойствах атомных и ионных связей, следует уточнить представления об их длине и энергии. Определение этих важнейших характеристик химической связи см. гл. III, 1. [c.76]

    Электростатическая модель. Электростатическая модель неизбежно и по праву связывается с именем Полинга [1590]. В книге Природа химической связи он утверждает, что свойство атома водорода вступать в связь определяется его 15-электроном. Обладая этим единственным электроном, он не может образовать более одной ковалентной связи. Отсюда делается вывод, что образование Н-связи обусловлено ионными силами. Этот аргумент, выдвинутый еще в 1928 г. [1590], основывается на принципе Паули, на валентной схеме химической связи и на классическом правиле валентности, согласно которому атом водорода может вступить в связь только через посредство 1з-электрона (см. также [1589]). Это утверждение еще и сейчас поддерживается защитниками электростатической теории и встречается в современных учебниках (например, [447], стр. 302 [1643], стр. 197). Эта аргументация эмпирически подтверждается тем, что наиболее прочная Н-связь образуется в том случае, когда А и В — ионы фтора следующая по прочности Н-связь включает атомы кислорода кислоты же, содержащие группу N — Н, обычно образуют сравнительно слабые Н-связи. В качестве дополнительного доказательства приводятся вычисления энергии Н-связи, основанные на модели точечных зарядов (см. сноску, разд. 8.3.1), диэлектрические [199, 172] и спектральные свойства [1084, 199, 1767, 1327, 407, 1849]. [c.197]

    Эта закономерность, по-видимому, является следствием того, что в ионную связь существенный вклад вносит кулоновское взаимодействие между положительно и отрицательно заряженными частями молекулы, которое при ее растяжении ослабляется медленнее, чем обменное взаимодействие энергия первого пропорциональна второго — ехр(—аг)]. Таким образом, анализ формы потенциальных кривых позволяет не только оценить энергии диссоциации химических связей, но и сделать определенные заключения об их природе. Ионные молекулы, в соответствии с указанным выше, должны обладать (по сравнению с ковалентными) более высокой реакционной способностью. [c.20]

    Природа конечных продуктов подобных реакций может быть весьма различной. Это следует из данных масс-спектрометрического исследования продуктов радиолиза разнообразных соединений. В результате облучения того или иного вещества образуется широкий набор ионов с разными массами. Нанример, при радиолизе этана (массовое число 30) образуются ионы с массовыми числами от 12 до 30 [1]. Энергия, которую приобретает возбужденная частица, значительно превышает энергию химической связи. В этом причина разнообразия актов расщепления исходных молекул. Все же можно отметить преимущественное образование таких частиц, для возникновения которых необходима минимальная энергия. [c.444]

    Атомные спектры этих тяжелых элементов очень сложны, и полосы в них трудно соотнести с соответствующими уровнями, квантовыми числами и конфигурациями. Энергии 5f-, 7з- и 7р-уровней сравнимы, и энергии, необходимые для возбуждения электронных переходов с одного уровня на другой, могут быть меньше, чем энергии химических связей. Поэтому электронное строение нона для одного и того же валентного состояния может быть различным в разных соединениях, а в растворах оно может зависеть от природы лигандов. Именно поэтому часто нельзя сказать, какие орбитали используются для образования связей, или решить, какова природа связи — ионная или ковалентная. [c.535]

    Как уже отмечалось, в газовой ф>азе, в отличие от раствора, реагирующая молекула может использовать только свои внутренние ресурсы не может быть и речи, по крайней мере при обычных давлениях, о совместных действиях с другими молекулами. Поэтому в газовой фазе должна быть особенно заметна роль заместителей. Ключ к природе переходного состояния дает тот факт, что и а-, и р-заместители влияют на связь углерод — галоген, а также аналогия с реакциями 1 и 5. 1 в растворе. Обе эти реакции протекают через переходное состояние, включающее общий карбониевый ион. В свете современных теорий молекулярных реакций в газовой фазе можно думать, что переходное состояние возникает в результате перераспределения энергии внутри молекулы, ведущего к концентрации энергии по связи углерод— галоген. Факты требуют также, чтобы последующее растяжение связи углерод—галоген сопровождалось поляризацией в смысле —X ". Можно представить следующие структуры для описания переходного состояния  [c.301]

    Фиксацию (закрепление) красителей на активных центрах волокна. Стадия протекает быстро, практически мгновенно. Характер образуемой связи краситель-волокно зависит от вида волокна и природы красителя и определяет гл. обр. устойчивость окраски к стирке и др. мокрым обработкам. Напр., активные красители на целлюлозных волокнах удерживаются в результате образования прочной ковалентной связи (энергия связи 110-630 кДж/моль), на белковых волокнах-ковалентных, ионных (41-82 кДж/моль) и водородных (21 -42 кДж/моль) связей, кислотные красители на белковых волокнах-в результате образования нонных, водородных связей и ван-дер-ваальсовых сил (энергия до 8,5 кДж/моль), прямые и кубовые красители на целлюлозных волокнах - водородных связей и ван-дер-ваальсовых сил. При наличии в молекуле иона тяжелого металла (см., напр.. Протравные красители) краситель с белковыми волокнами образует координац. связи (до 100 кДж/моль), а также ионные и водородные. На хим. (синтетич.) волокнах краситель удерживается благодаря ван-дер-ваальсовым силам и водородным связям (дисперсные красители), ионным связям (кислотные и катионные красители на полиамидном и поли-акрилонитрильном волокнах соотв.), ковалентным связям (активные красители на полиамидном волокне), ионным и координац. связям (кислотные металлсодержащие красители на полиамидном волокне). О механизмах и особенностях К. в. разл. классами красителей см. также Активные красители, Дисперсные красите.ш. Катионные красители. Кислотные красители. Кубовые красители, Прямые красители и др. [c.500]

    Влияние природы вещества проявляется уже в элементарных актах. Это влияние связано с устойчивостью положительных ионов и действием вторичных электронов, около половины которых обладают энергией, сопоставимой с энергией химической связи, а более 10% имеют энергию, достаточную для дальнейшей ионизации вещества. Если вещество полярно, оно может обладать способностью к захвату теплового электрона с образованием отрицательного иона. Если же вещество неполярно, замедленные электроны будут нейтрализованы положительными ионами. [c.349]

    В общем случае для непереходных металлов характерно образование металлоорганических соединений с а-связью М — С, а для переходных — более характерным является образование комплексов с я-лигандами (олефиновые и ацетиленовые я-комплексы, я-аллильные, я-циклопентадие-нильные, я-ареновые комплексы [333]). Металлы конца переходной серии (Си, Ад) по своим свойствам примыкают к типичным переходным металлам, в некоторых случаях природа их соединений характерна для обеих групп металлов. Используя результаты расчетов интегралов перекрывания и энергий связи алкильных и арильных производных переходных и непереходных металлов, Джаффе и Доук [334] показали, что связи М—С в случае переходных металлов имеют лишь одну треть той энергии ионного резонанса, которая определяет стабильность алкилов щелоч- [c.69]

    Далее, так как энергии 5/-, Ы-, 5- и 7р-уровней сравнимы между собой, то энергии перехода электрона с одного из этих уровней на другой, скажем, с 5 / на Ы, должны лежать в преде.гах обычных значений энергий химических связей. Таким образом, электронная конфигурация элемента в данном состоянии окисления может меняться от соединения к соединению, а в растворе зависеть от природы лигандов. В соответствии с этим часто невозможно сказать, какие орбитали участвуют в образовании связи, и иногда нельзя судить о том, является ли связь ковалентной или ионной. [c.529]

    Теплота сольватации должна быть связана с природой взаимодействия ионов с растворителем. Одно из возможных предположений состоит в том, что эта теплота обусловлена изменением энергии иона, как электрического заряда, при переходе его из вакуума (е=1) в растворитель, обладающий более высокой диэлектрической проницаемостью. [c.44]

    На практике идеальных растворов конечной концентрации (за исключением, может быть, растворов стереоизомеров) быть не может. При образовании раствора меняется окружение каждой молекулы (атома, иона) в нем вместо молекул того же сорта оказываются другие молекулы. Возникают новые связи разной природы, энергия которых не может быть точно равна средней энергии взаимодействия одинаковых молекул в чистых компонентах ав 72- аа+ + вв). Тем самым и энтальпия образования реального раствора не может равняться нулю АНфО. Если ав<72( аа+ бв), то ДЯ>0 -процесс растворения эндотермичен если Еав>Ч2(Еаа+Евв), то ДЯ>0 и при образовании раствора теплота выделяется. [c.246]

    Природу ионной связи, структуру и свойства ионных соединений можно объяснить электростатическим взаимодействием ионов. Способность элементов образовывать простые ионы обусловлена электронной структурой их атомов. Эту способность можно оценить энергие ионизации и сродством атомов к электрону. Понятно, что легче всего образуют катионы элементы с малой энергией ионизации — щелочные и щелочно-земельные металлы. Образование же в условиях обычных химических превращений простых катионов других элементов менее вероятно, так как это связано с затратой большой энергии на ионизацию атомов. 1 [c.100]

    В результате притяжения между ионом и дипольными молекулами воды электростатическая свободная энергия иона понижается то же происходит и в том случае, когда ион притягивает другие ионы с противополояшым знаком заряда, в результате чего его собственный заряд уменьшается или полностью нейтрализуется. Иногда при таком взаимодействии образуется даже противоположно заряженный комплекс большого размера с настоящей химической связью. Закономерности взаимодействия этого типа отличаются большой сложностью мы не будем на них останавливаться. ОднаКо сам факт существования таких комплексов и их природа могут -быть установлены на основании независимых экспериментов. В некоторых случаях ионообменные процессы могут быть даже использованы для определения степени комплексообразования (см. главу 7). Способность ионов металлов образовывать различные комплексные ионы представляет большой интерес и составляет одну из полезных ст.орон ионообменных процессов. Ясно, что применение элюентов или функциональных групп ионита, способных переводить некоторые ионы в комплексную форму, должно существенно влиять на поведение этих ионов при обмене. [c.181]

    Как следует из изложенного, равновесие между ионной парой (ионным ассоциатом) и свободными сольватированными ионами (процесс (1 — 12)) определяется величиной диэлектрической проницаемости, которая, в свою очередь, диктует величину энергии ион-ионного взаимодействия, зависящую прежде всего от эффективных радиусов катиона и аниона. Таким образом, при прочих равных условиях прежде всего при постоянной диэлектрической проницаемости, степень электролитической диссоциации будет тем больше, чем больше сумма эффективных ионных радиусов ионов электролита. Последние же, как было показано выше, оп-рёДетяюТся природой и степенью сольватации, т. е. связаны с процессами кислотно-основного взаимодействия ионов электролита, с одной стороны, и молекул растворителя — с другой. [c.49]

    Смещение полос поглощения фосфорильных групп, связанных с ионом гидроксония и с молекулой НС],одинаково и равно 38 смГ . По данным Флетчера и др. [28], отношение смещения полосы поглощения гидроксильной группы кислоты, связанной с ТБФ, к смещению полосы поглощения фосфорильной группы является постоянной величиной. Это означает, что смещение полосы поглощения фосфорильной группы пропорционально энергии водородной связи. Действительно, на рис. 3 показана зависимость энергии водородной связи протонодопорной молекулы от величины смещения полосы фосфорильной группы. Значения энергий водородных связей получены нами нз исследования температурных зависимостей констант равновесия соответствующих реакций и парциального давления пара кислот над раствором ТБФ. Величина смещения Avpo измерена нри помощи инфракрасного спектрометра ИКС-14. Следовательно, энергия водородной связи ТБФ с ионом гидроксония должна равняться 7,3 ккая1молъ. Если какая-либо кислота экстрагируется в виде соли гидроксония, то, очевидно, в этом случае энергия водородной связи гидроксония с реагентом будет мало зависеть от природы аниона. Отсюда следует, что в тех случаях, когда энергия водородной связи соли гидроксония с экстрагентом будет больше, чем энергия связи молекулы кислоты с тем же экстрагентом, тогда экстракция кислоты в форме соли гидроксония становится энергетически более выгодной. [c.52]

    То молекул, то отличия В всличине этой энергии для разнык кислот не сказываются на изменении их относительной силы. Различие в энергии взаимодействия растворителя с молекулами кислот разной природы, как мы уже видели, связано с индивидуальными особенностями во взаимодействии полярной части молекул с дипольными молекулами растворителей. Различие во влиянии растворителя на изменение энергии ионов объясняется особенностями их структуры и отличием энергии их взаимодействия с дипольными молекулами растворителей. Например, различие в энергии взаимодейстЕия ионов карбоновых кислот и фенолов объясняется тем, что карбоновые кислоты при ионизации изменяют свою структу ру так  [c.641]

    Скорость П, ц. увеличивается с ростом реакционной сиособности раступц го конца цепп пли энергии образующейся связи Й Н. Так, эффективность II. ц. па углеводороды ирн радикальной полимеризации растет при переходе стирол метилметакрилат акрплопит-рил випилацетат —> этилен. В случае ионной иолимеризации относительная эффективность П, ц. в значительной степени. зависит также от природы растворителя и каталитич. системы. [c.290]


Смотреть страницы где упоминается термин Природа и энергия ионных связей: [c.22]    [c.237]    [c.189]    [c.124]    [c.43]    [c.9]    [c.55]    [c.173]    [c.517]    [c.284]    [c.243]    [c.408]   
Смотреть главы в:

Основы физической химии -> Природа и энергия ионных связей




ПОИСК





Смотрите так же термины и статьи:

Ион ионы связи

Ионная связь

Ионы энергия,

Природа ионов

Связь природа

Связь связь с энергией

Связь энергия Энергия связи

Энергия ионов

Энергия связи

природа связе



© 2025 chem21.info Реклама на сайте