Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Угловое напряжение

    Теория напряжения Байера в свое время удовлетворительно объясняла нестойкость циклов малого размера (трех- и четырехчленных). Однако впоследствии было установлено, что тетраэдрические атомы углерода в циклических системах не находятся в одной плоскости, поэтому возможно построение шестичленных циклов и любых циклов большего размера, свободных от углового напряжения. [c.90]


    В четырехчленных циклах также имеется угловое напряжение [211], но намного меньшее, и они труднее поддаются реакциям раскрытия цикла. Циклобутан более устойчив к броми-рованию, чем циклопропан, и хотя его можно гидрировать до бутана, это требует более жестких условий. Тем не менее пиро- [c.189]

    Эти противоречия были устранены позднее работами Саксе и Мора. Онн показали, что многие циклы, за исключением трехчленного, не имеют плоскостного строения (чего не допускал Байер). Выход цикла из плоскости связан со взаимным отталкиванием соседних СНг-групи и стремлением уменьшить угловое напряжение в [c.272]

Таблица VI- . Типичные критические угловые напряжения сдвига в псевдоожиженных слоях 17 Таблица VI- . Типичные критические угловые напряжения сдвига в псевдоожиженных слоях 17
    Циклы с числом звеньев меньше пяти сильно напряжены вследствие высокого углового напряжения, а именно, больших искажений их валентных углов по сравнению с тетраэдрическим, поэтому циклизация трех- и четырехчленных колец маловероятна. Наименьшую напряженность имеют шестичленные циклы. Возможно также образование пяти- и семичленных циклов. Наличие циклов с большим, числом звеньев (более 12) ранее считалось практически маловероятным, ввиду того, что их напряженность примерно равна напряженности линейных полимеров [9, с. 75]. Однако в последнее время было показано, что в зависимости от условий проведения равновесной поликонденсации диэтиленгликоля и адипиновой кислоты в отсутствие катализатора наблюдается образование макроциклов, характеризующихся распределением по молекулярным массам, величина которых изменяется от 200 до 1000 [18]. [c.161]

    А. Байер — автор теории напряжения (1885 г.) — ошибочно считал, что лишь циклопентан практически свободен от углового напряжения, а большие циклы имеют плоское строение и потому напряжены. Доводом в пользу существования напряжения в больших циклах служили трудности в синтезе циклов большого размера. [c.135]

    Угловое напряжение (напряжение Байера) обусловлено взаимным отталкиванием молекулярных орбиталей в циклах с валентными углами меньше тетраэдрического (109,5°). В малых циклах — трех-, [c.134]

    Сравнительно легко реактивы Гриньяра взаимодействуют как нуклеофилы с оксираном (20) и 1,2-эпоксипропаном, которые также относятся к простым эфирам. Их повышенная реакционная способность обусловлена большим угловым напряжением трехчленного цикла. [c.272]


    Бросая взгляд на изменение представлений о конформации с 1950 г. по настоящее время, отметим, что Основное различие во взглядах касалось двух вопросов а) отвечает ли конформации только оптимальное расположение атомов в пространстве (минимум потенциальной энергии) или любое мгновенное расположение б) каким образом отграничить конформационную изомерию От других ее видов (в частности, от конфигурационной), В 1950 г, Бартон писал о ненапряженных расположениях в пространстве, т. е,, казалось бы, склонялся к варианту оптимального рас- положения. Однако, по существу, ненапряженная си- стема — конструкция условная, и поэтому его определение было двусмысленным и неработоспособным. В последующей публикации 1953 г, Бартон уточнил ...расположения в пространстве атомов молекулы, которые свободны от углового напряжения (это уточнение ничего не изменило)—и тут же указал в качестве примера на конформации этана, возможное число которых бесконечно. Значит, конформации в его понимании отвечало произвольное мгновенное расположение атомов, что подтверждается и указанием на тождественность терминов конформация и констелляция (в определении Прелога). Первые определения Бартона представляли странный гибрид альтернативных взглядов на понятие конформации. В то же время Прелог определенно называл констелляцией п]роизвольное расположение атомов, однако включал в сферу действия понятия лишь ротационную изомерию. Близким по смыслу и непротиворечивым было" И несколько более позднее определение У. Клайна 19М г.) Термин конформация обозначает различные расположения в пространстве атомов в ёдин  [c.131]

    Эпоксисоединения — оксиран и его гомологи — также можно отнести к классу простых эфиров, однако их реакционная способность значительно выше. Это, по-видимому, объясняется тем, что в эпоксидах, как и в трехчленных циклических углеводородах, имеется значительное угловое напряжение валентные углы деформированы по сравнению с тетраэдрическим. В отличие от простых эфиров сс-эпоксиды способны реагировать не только с иодоводородной кислотой, но и с разбавленными хлороводородной и бромоводородной кислотами с образованием галогенгид-ринов. Эта реакция протекает по механизму, аналогичному взаимодействию галогеноводородов со спиртами. Кроме того, эпо- [c.157]

    В трехчленных циклах (углы равны 60°, т. е. сильно отличаются от тетраэдрических) имеется значительное угловое напряжение. В отличие от обычных простых эфиров этиленоксид довольно реакционноспособное соединение, подвергающееся реакциям раскрытия цикла под действием многих реагентов (т. 2, [c.187]

    Этими соображениями нельзя объяснить повышенную реакционную способность циклогексанона, так как роль углового напряжения в данном случае незначительна. Объяснить повышенную реакционную способность по сравнению с ацетоном в данном случае можно следующим образом. В исходном цикло-гекСаноне имеется торсионное напряжение, так как атом кислорода карбонильной группы находится в одной плоскости с экваториальными атомами водорода соседних метиленовых групп, что создает торсионное напряжение. В продукте же реакции торсионное напряжение значительно уменьшается, так как все метиленовые группы находятся в более выгодной скошенной конформации, а гидроксильная группа занимает более энергетически выгодное экваториальное положение. [c.482]

    Пяти- и шестичленные кислородсодержащие циклические соединения, практически свободные от углового напряжения, в обычных условиях не взаимодействуют с реактивами Гриньяра. Поэтому тетрагидрофуран, наряду с диэтиловым эфиром, можно использовать в качестве растворителя в реакциях с участием магнийорганических соединений. [c.273]

    I. Укажите угловое напряжение в циклопропане. а. 0°44 в. 9°44 б. 5°1б г, 24°44  [c.62]

    Потенциал ионизации, усредненный по числу валентных связей металла в решетке окисла Молярный дипольный момент Сумма угловых напряжений Молярная магнитная восприимчивость Структурный фактор [c.167]

    Различие в энергиях двух конформаций циклогексана, а также отмеченное выше наличие некоторого напряжения у цикло-пентана не могли быть объяснены с позиций теории Байера — Заксе — Мора из-за отсутствия у этих циклов углового напряжения. Стало очевидным, что напряжение в молекулах циклических углеводородов может быть обусловлено какими-то другими причинами. [c.479]

    Следовательно, орбитальное управление объясняет высокие скорости некоторых -внутримолекулярных реакций, используя понятия благоприятной ориентации орбиталей, подвергающихся регибридизации в переходном состоянии. Однако не очень понятно, каким образом влияние этого фактора можно отделить от влияния других структурных факторов. В настоящее время существует больше аргументов против того, чтобы приписывать орбитальному управлению решающее значение. Например, эффективная концентрация соседних групп принимается равной 55 моль/л это соответствует концентрации чистой воды. Считают, что при этом существенно недооценивается вклад поступательной энтропии (согласно предположению Дженкса) в эффективную концентрацию [70]. Хотя некоторое необходимое перекрывание орбиталей должно происходить в переходном состоянии, оно соответствует изменению ориентации не больше чем на 10°. Такое искажение сио-собно вызвать угловое напряжение (не больше 11 кДж/моль, т. е. 2,7 ккал/моль) связи между углеродными атомами [58]. [c.214]


    Малые циклы (3- и 4-членные). Преобладает угловое напряжение за счет уменьшения углов. [c.194]

    В случае 3-(аминометил-1 С)-1,2-бензоциклобутена, хотя конформационный фактор и благоприятствует промежуточному образованию бициклоалканфенониевого иона, увеличение углового напряжения будет способствовать перегруппировке при участии эндоциклической метиленовой группы. Однако, как показывают полученные результаты, расширение четырехчленного цикла также сопровождается 100%-й перегруппировкой изотопного углерода в а-положение расширенного кольца. [c.129]

    Это несоответствие теоретических представлений экспериментальным фактам побудило Г. Заксе, а впоследствии Э.Мора модернизировать теорию Байера, сняв постулат последнего о плоском строении циклоалканов с числом атомов углерода, большим или равным шести. Они предположили, что при замыкании циклов валентные углы у всех атомов углерода остаются тетраэдрическими, вследствие чего угловое напряжение исчезает, а циклы становятся неплоскими. [c.478]

    С этих позиций повышенная реакционная способность циклопропана при взаимодействии с электрофильными реагентами объясняется не столько угловым напряжением, а тем, что из-за особого характера связей в этом соединении находящиеся на связывающих орбиталях электроны более доступны для электрофильных реагентов. [c.477]

    С увеличением размера цикла отклонение углов от идеального (тетраэдрического) и, следовательно, угловое напряжение уменьшаются. Однако уже в шестичленном цикле, если бы он был плоским, валентный угол составлял бы 120°, что также привело бы к появлению некоторого напряжения. Это напряжение снимается за счет неплоского нространственного расположения атомов углерода в цикле. [c.135]

    Трех- и четырехчленные циклы испытывают угловое напряжение, что обусловливает легкость их раскрытия под влиянием электрофильных и нуклеофильных реагентов. Этому способствуют наличие неподеленных пар электронов (основность) гетероатомов и полярность связей гетероатомов с атомами углерода  [c.315]

    При гидрировании З-трег-бутил-2-метилциклогексена на скелетном никеле выход цыс-формы составил 93— 94%, а в случае 2-грег-бутил-З-метилциклогексена — только 6—13%. Считают [13], что изомерный состав продуктов реакции и смещение положения равновесия между ст- и я-адсорбированными формами в сторону ст-форм определяется одними и теми же факторами 1) стерическим взаимодействием катализатора с ал-лильной группировкой и 2) торсионным угловым напряжением, возникающим при взаимодействии аллильной [c.26]

    Стремление связей к выходу из заслоненного положения способствует выходу одного или нескольких атомов углерода из плоскости цикла, даже если это сопряжено с некоторым усилением углового напряжения. Кольцо циклобутана слегка изогнуто  [c.136]

    Если бы все шесть углеродных атомов циклогексана лежали в одной плоскости, углы между связями должны были бы составлять 120°, как углы в правильном шестиугольнике. Поскольку обычный тетраэдрический угол равен 109,5°, в такой плоской молекуле возникло бы угловое напряжение. Существование такого соединения, как циклопропан, показывает, что молекула может выдерживать и гораздо большее напряжение. Однако циклопропан вынужден быть плоским, так как никакая иная конформация для него невозможна что же касается циклогексана, то он существует в виде двух крайних конформаций, а именно в форме кресла и в форме ванны (или лодки). Эти конформации не плоские, а складчатые, и все углы в них тетраэдрические [160]. Конформация кресла представляет собой жесткую структуру, конформация ванны гибкая [161] и может легко переходить в несколько более устойчивую форму, извест- [c.181]

    В циклах больших, чем четырехчленные, угловое напряжение за счет уменьшения углов отсутствует, но имеются напряжения других видов, среди которых выделяют следующие три. Сначала рассмотрим форму кресла циклогексана, в которой нет напряжения ни одного из этих трех видов. Каждую углерод-углеродную связь в конформации кресла можно представить, как в формуле 76, т. е. в гош-конформации. В пятичленных цик- [c.192]

    Она построена из недеформированных тетраэдров и поэтому не имеет углового напряжения. Все С-атомы находятся в нечетных конформациях (особенно четко это видно при изображении циклогексана в виде сдвоенной проекции Ньюмена)  [c.106]

    Наконец, следует указать, что принцип углового напряжения амидных связей развит также Моком в 1976 г. и использован в приложении к механизму действия карбоксипептидазы А [121]. Он включает поворот амидной связи таким образом, чтобы стало возможным цис- или транс-присоединение нуклеофила и протона по образующимся орбиталям в переходном состоянии. Этот принцип дополняет теорию (Делоншама) оптимальной геометрии тетраэдрического интермедиата в переходном состоянии. [c.257]

    Однако в случае З-грег-бутил-2-метилциклогексена каталитические пространственные затруднения за счет объемистой грег-бутильной группы в аллильном положении играют значительно большую роль, чем торсионное угловое напряжение между метильной и грет-бутильной группами. В результате образование цис-формы при гидрировании этого соединения теоретически становится предпочтительнее, что согласуется с экспериментом. Это отличный пример конформационного подхода к объяснё нию механизма каталитической реакции. Было бы также интересно дать конформационное объяснение необычно низкому выходу ис-формы при гидрировании [c.28]

    Имеется много доказательств, вытекающих главным образом из рассмотрения констант спин-спинового взаимодействия в ЯМР-спектрах, что связи в циклопропанах отличаются от связей в соответствующих соединениях, не имеющих углового напряжения [204]. В обычном атоме углерода гибридизуются одна 5- и три р-орбитали, давая почти эквивалентные зр -орби-тали (разд. 1.11), каждая из которых на 25% имеет 5-харак-тер. Но в циклопропановом атоме углерода четыре гибридные орбитали далеко не эквивалентны. Две орбитали, направленные к внешним связям, имеют больший х-характер, чем обычная 5р -орбиталь, тогда как две орбитали, образующие связи внутри цикла, имеют меньший 5-характер и больший р-характер, что делает их похожими на обычные р-орбитали, для которых характерны валентные углы 90, а не 109,5°. Поскольку угловое напряжение за счет уменьшения углов в циклопропанах соответствует разности в величине характеристичного угла и реального угла в 60°, этот дополнительный характер частично снимает напряжение. Внешние орбитали на 33 %, имеют 5-харак-тер, т. е., по существу, являются р -орбиталями внутренние орбитали только на 17 % имеют 5-характер, так что их можно назвать зр -орбиталями [205]. Таким образом, каладая углерод-углеродная связь в циклопропане образована перекрыванием двух 5р -орбиталей. Расчеты по методу молекулярных орбита-лей показывают, что такие связи не являются целиком сг-свя-зями. В обычных С—С-связях 5р -орбитали перекрываются таким образом, что прямая, соединяющая ядра, становится осью симметрии электронного облака. Но в циклопропане электронная плотность смещена в сторону от кольца. Направление орбитального перекрывания показано на рис. 4.5 [20] угол 0 для циклопропана составляет 2Г. Аналогичное явление наблюдается и для циклобутана, но в меньшей степени здесь угол 0 равен 7° [206]. Связи в циклопропане называют изогнутыми, или банановыми -, по своему характеру они являются промежуточными между о- и я-связями, поэтому циклопропаны в некоторых отношениях ведут себя подобно соединениям с двойной связью [207]. Данные УФ-спектров [208] и некоторые другие данные свидетельствуют о том, что циклопропановое кольцо участвует в сопряжении с соседней двойной связью, причем в кон- [c.188]

    В нормальных условиях более устойчива кресловидная корформация, свободная как от угловых напряжений, так и от напряжений, возникающих за счет заслонения связей. Значительная разншш в энергии между жесткой и гибкой формами ккал/моль)-причина того, что при 300 К из тысячи молекул циклогексана лишь одна будет находиться в виде ванны или твист-формы (см. /98, с. 55/) [c.177]

    Повышенную реакционную способность циклобутанона по сравнению с ацетоном можно объяснить уменьшением углового напряжения при переходе карбонильного атома углерода из состояния 5р -гибридизации (угол 120°) в состояние зр -гибри-дизации (угол 109°). Этот выигрыш с избытком компенсирует увеличение торсионного напряжения, возникающего из-за заслонения атома кислорода гидроксильной группы атомами водорода соседних метиленовых групп. [c.482]

    Если принять, что п в формуле Хюккеля равно нулю, то к ароматическим соединениям следует отнести углеводороды ряда циклопропена с единственной л-связью. Долгое нремя считали, что соединения такого типа нз-за большого углового напряжения должны быть неустоИчипымн и снптезнровить нх иенозмож- [c.312]

    Соединения 68 и 69 были получены в виде твердых кристаллических веществ при —80 °С [148]. Спектры ЯМР показывают, что все атомы водорода этих соединений лежат в олефиновой области и ни одно из них не является ароматическим. По спектрам С-ЯМР и Н-ЯМР установлено, что оба соединения неплоские. Однако тот факт, что угловое напряжение не является непреодолимым, был продемонстрирован получением нескольких соединений, имеющих большие углы, но при этом определенно представляющих собой плоские десятиэлектронные ароматические системы. Среди этих соединений — дианион 70, анионы 71 и 72, а также азонин 73 [149]. Дианион 70 [150] имеет [c.84]

    Если связи в молекуле вынужденно образуют необычные валентные углы, в ней возникает стерическое напряжение [198]. Это выражается в увеличении энергии молекулы по сравнению с тем состоянием, в котором отсутствует искажение углов. В целом можно отметить два вида структурных особенностей, связанных с необычными валентными углами. Одна из них относится к малым циклам, где углы становятся меньше, чем при обычном перекрывании орбиталей здесь речь идет об угловом напряжении за счет уменьшения углов. Другая структурная особенность возникает при такой геометрии молекулы, когда несвязанные атомы вынуждены располагаться в непосредственной близости друг к другу, т. е. имеют место несвязывающие взаимодействия. [c.187]

    С(1)—С(3) в 5-цианопроизводном соединения 75 составляет 1,64 А], что частично компенсирует угловое напряжение. Высокая реакционная способность связи С(1)—С(3) в 75 объясняется не только напряжением, но и возможностью легкого подхода реагента к этим атомам, не имеющим внешних связей с заместителями. [c.192]

    В особом случае р-лактонов, где важную роль играет угловое напряжение, наблюдается разрыв связи между алкильной группой и кислородом (механизм Вдь2, так же как и в аналогичном случае гидролиза р-лактонов, реакция 10-11), а в качестве продукта образуется не амид, а р-аминокислота  [c.160]


Смотреть страницы где упоминается термин Угловое напряжение: [c.27]    [c.169]    [c.431]    [c.272]    [c.133]    [c.84]    [c.193]    [c.194]    [c.213]    [c.279]    [c.136]   
Основы химии высокомолекулярных соединений (1976) -- [ c.135 , c.140 ]

Органический синтез. Наука и искусство (2001) -- [ c.372 , c.455 ]

Углубленный курс органической химии Книга 1 (1981) -- [ c.14 ]

Органический синтез (2001) -- [ c.372 , c.455 ]

Основы органической химии (1968) -- [ c.102 ]

Основы органической химии 1 Издание 2 (1978) -- [ c.122 ]

Основы органической химии Часть 1 (1968) -- [ c.102 ]

Карбониевые ионы (1970) -- [ c.114 ]

Стереохимия соединений углерода (1965) -- [ c.245 ]

Курс физической органический химии (1972) -- [ c.73 ]




ПОИСК





Смотрите так же термины и статьи:

ВКИ угловые

Марковникова напряжение угловое

Напряжение п циклах угловое

Напряжение угловое Байера

Напряжение угловое байеровское

Некоторые следствия углового напряжения в малых циклах

Определение коэффициентов концентрации напряжений и прочности элементов с угловыми переходами

Орбитальное описание углового напряжения

ПМР, химический сдвиг угловое напряжение

Рекомендации по определению допускаемых напряжений для угловых швов при статической нагрузке

Стерические эффекты угловое напряжение

Угловое напряжение в больших циклах

Угловое напряжение в циклоалканах

Угловое напряжение и связывание в малых гетероциклах

Циклопропан углового напряжения

диаксиальное взаимодействие угловое напряжение



© 2025 chem21.info Реклама на сайте