Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массоотдача при ламинарном потоке жидкост

    Принятая гипотеза о квадратичном распределении коэффициента диффузии в турбулентном паровом потоке и молекулярном переносе в ламинарном потоке жидкости приводит к получению несколько заниженных значений коэффициентов массоотдачи фаз, поскольку не учитывалось волнообразование. Наряду с этим удалось уточнить функциональную связь массоотдачи с гидродина.микой. [c.158]


    Ряд моделей, подобно модели обновления, основан на предположении, что на границе газ—жидкость не образуется пограничного слоя со стороны жидкости. Так, по Брауэру [35], в трубках с орошаемыми стенками основное сопротивление жидкой фазы сосредоточено в ламинарном слое жидкости у стенки аппарата. Однако трудно предположить, что сопротивление в слое, расположенном за ядром потока (в направлении переноса массы из газа в жидкость), может оказывать заметное влияние на перенос от поверхности раздела к этому ядру. По модели Брауэра коэффициент массоотдачи пропорционален тогда как по опытным данным рл пропорционален (стр. 118). [c.108]

    Теоретическое определение коэффициентов массоотдачи, как и в других случаях конвективного массопереноса, возможно только для наиболее простых случаев. Как правило, рассматриваются частицы сферической формы при ламинарном режиме обтекания потоками жидкости или газа. Решение простых задач позволяет раскрыть механизмы массообменных процессов и обосновать вид критериальных зависимостей (5.2.5.1) для описания более сложных процессов. [c.274]

    Приведенные результаты показывают также, что соотношение диффузионного сопротивления фаз зависит от типа контактных устройств. В этой связи особого внимания заслуживают мелкие сетчатые и спиральные насадки. Насадки подобного типа создают значительную турбулизацию паровой фазы, способствуют возникновению завихрений потока, что ведет к интенсификации массоотдачи в этой фазе. При этом условия течения потока жидкости сохраняются относительно спокойными благодаря большому количеству мелких ячеек в каждом элементе насадки и, как следствие этого, сохраняется ламинарная пленка в широком интервале нагрузок. Понятно, что в подобных условиях доля сопротивления массопередачи в жидкой фазе должна возрастать, что подтверждается опытными данными, приведенными в табл. П1-4. [c.97]

    Используя концепцию диффузионного пограничного слоя, мы получили аналитическое решение системы уравнений, описывающей массоотдачу ге-компонентной смеси при ламинарном движении жидкости вдоль плоской поверхности. Уравнения для расчета потоков компонентов д-, усредненных по поверхности пластины, в частном случае п = 3 имеют вид [c.136]

    Анализ Гретца был модифицирован Пигфордом [46], чтобы принять во внимание поправку на изменение вязкости и плотности с изменением температуры, когда среда нагревается или охлаждается при ламинарном течении через вертикальную трубу. Гольдман и Барретт [27] применили анализ Пигфорда при изучении массоотдачи с целью учесть изменение свойств жидкости и коэффициента диффузии с изменением концентрации диффундирующего вещества. Гольдман и Барретт сообщают данные экспериментов по растворению трубы из соли в ламинарных потоках (0,03 < Re < 140) водных растворов глицерина. [c.99]


    Сравнение выражений ( .34) и ( .33) приводит к выводу, что физические свойства жидкости (V и /) ) одинаково влияют как на толщину диффузионного пограничного слоя в ламинарном потоке жидкости, так и на толщину диффузионного подслоя в турбулентном потоке жидкости. Если принять, что основное сопротивление массоотдаче от поверхности в обтекающую ее жидкость создается диффузионным подслоем, в котором перенос вещества происходит путем молекулярной диффузии, то поток вещества / можно выразить соотношениями  [c.421]

    На основании разработанного в [161 метода определения эффективного коэффициента диффузии в ламинарном потоке жидкости при скорости теченил пленки, рассчитанной по формуле Нуссельта, получается соотношение, которое необходимо учитывать в качестве поправочного члена при вычислении коэффициента массоотдачи или частной высоты единицы переноса в жидкой фазе [c.85]

    Для гладкой ламинарной пленки жидкости (число Рейнольдса Reи<=40/v < 1600, где О — линейная плотность орошения, V — кинематич. вязкость жидкости) в условиях ее гравитац. стекания и умеренных скоростей газа разработаны теор. методы расчета гидродинамич. параметров течения и коэф. тепло-и массоотдачи в фазах. Однако уже при Не > 20—40 в реальных условиях пов-сть пленки покрывается системой нерегулярных волн, к-рые оказывают существенное влияние на перепад давления в орошаемом канале и коэф. массо- и теплоотдачи в фазах. В условиях интенсивного прямоточного течения процессы переноса кол-ва движения, теплоты и массы осложняются также сильным гидродинамич. воздействием потока газа на среднюю толщину, профиль скорости и др. характеристики пленки жидкости и наличием брызгоуноса (унос капель жидкости потоком газа, к-рые срываются с гребней волн и вновь падают на пов-сть пленки). В этих случаях рассчитывают осн. гидродинамич. параметры пленочного течения и коэф. массо- а теплообмена, обычно по полузмпирическим зависимостям. [c.449]

    В кимической промышленности широко используются пленочные массообменные аппараты, в которых реализуется режим турбулентного движения таза и ламинарного движения стекающей пленки. Чисто ламинарное стека ние жидкости имеет место при числах Рейнольдса Ке = 164-20. В реальных аппаратах, работающих при малых нагрузках по жидкости, то есть при числах Рёйнольдса до Ке = 60 80, происходит переход к волновому режиму стекАния пленки. Однако модель ламин рно стекающей пленки достаточно хорошо описывает процессы массообмена между жидкостью и газом Хатта осуществил теоретический расчет средней концентрации растворяющегося газа в ламинарйо движущейся пленке при допущении, что скорость плёнки по глубине жидкости остается постоянной. Вязовов , Левнч и ряд других исследователей предложили решение уравнения конвективной диффузии в жидкой пленке, считая распределение скоростей по толщине пленки параболическим. Однако в упомянутых выше работах система газ — жидкость в целом не рассматривалась. В работе были получены приближенные значения коэффициентов массоотдачи для ламинарного потока газа и ламинарно стекающей пленки. Настоящая работа посвящена изучению массообмена при противоточном движении ламинарной пленки жидкости и турбулентном потоке газа в трубке. [c.76]

    Допуская равновесие между чистым окружающим газом и поверхностью жидкости, можно принять концентрацию растворенного вещества на поверхности постоянной и равной во всех ее точках. Тогда граничные условия будут следующими с = а при р = О, dddy = О при р = 1 и с = Со (концентрация потока питания) при 0=0. Уравнение (к) и принятые граничные условия точно соответствуют представленной в разделе 3,8 задаче, решенной Пигфордом 45] для массоотдачи в ламинарную пленку жидкости на вертикальной стенке. Результат дает выражение с в виде функции от р и ф. [c.104]

    Массообмен одиночных капель (пузырей) с ламинарным посту-пахельньпл потоком жидкости. Циркуляционное движение среды внутри газового пузыря или капли приводит к значительному снижению торможения обтекающей жидкости на поверхности и тем самым интенсифицирует массообмен в несущей фазе. Наличие поверхностно-активных веществ в некоторых случаях затормаживает поверхность раздела и тем самым циркуляционное движение внутри капли, в результате чего коэффициент массоотдачи во внещней фазе снижается и приближается к значениям, характерным для твердых частиц. [c.380]

    Стенание тонкой пленки жидкости в пленочных абсорберах происходит при непрерывном воздействии газового потока. При этом возможен противоток газа и жидкости, нисходящий и восходящий прямоток. Для каждого случая следует находить по литературным данным уравнения для расчета коэффициентов тепло- и массоотдачи. При этом следует помнить, что при течении пленок жидкостей возможны два гидродинамических режима ламинарный (при Непл < 1600) и турбулентный (при Непл > 1600). Для каждого из этих режимов существуют свои уравнения для расчета как средней толщины пленки, так и коэффициентов теплоотдачи. Примерную схему расчета пленочных абсорберов можно представить следующим образом. [c.345]


    В большинстве случаев обтекание частиц как реальной, так и правильной геометрической формы происходит при таких численных значениях критериев Рейнольдса, когда имеет место отрыв пограничного слоя от поверхности частиц (см. рис. 1.3) и характеры движения вязкой жидкости вблизи лобовой части и в кормовой области частицы оказываются существенно различными. Если частица мала, то пограничный слой на ее поверхности не успевает турбулизироваться до точки его отрыва, и поток целевого компонента поперек ламинарного пограничного слоя на лобовую часть частицы может быть определен по соотношениям для ламинарного пограничного слоя (1.28). Ниже точки отрыва (6 я/2) течение вязкого потока носит неупорядоченный, вихревой характер анализ массообменных процессов в этой области теоретическими методами затруднителен. Для приближенной оценки массоотдачи в кормовой зоне можно воспользоваться соотношениями, справедливыми для турбулентного режима обтекания поверхности, при зтом в качестве характерной скорости принимается скорость набегающего потока. Расчетные оценки показывают, что количества целевого компонента, поступающие на частицу округлой формы в лобовой и кормовой ее частях, сравнимы по величине. По мере увеличения скорости набегающего потока интенсивность массоотдачи в кормовой области увеличивается, поскольку зависимость интенсивности массообмена от скорости для турбулентного режима более значительная, чем для ламинарного (показатель степени при критерии Рейнольдса 0,8 против 0,33, соответственно), [c.41]

    При обтекании жидкостью твердой поверхности образуется область, называемая диффузионным пограничным слоем, в которой происходит измопение концентрации примеси от ее значения у стенки до значения во внешнем потоке. В трехкомпонентной системе (растворитель и два растворенных вещества) существуют два диффузионных пограничных слоя для компонентов растворенных веществ [2, 3]. В работе [31 нами на примере ламинарного обтейания пластины показано, что коэффициент массоотдачи компонента в смеси зависит от концентрации и величин диффузионных коэффициентов молекулярной диффузии другого комнонента. [c.133]

    Известно очень большое число данных по испарению жидкостей из лотков, расположенных на дне небольшой аэродинамической трубы. Плюэс и др. [19, 169] измеряли скорости сублимации некоторых органических твердых веществ, осуществляемой с нижней поверхности квадратного канала, через который при ламинарном режиме пропускали поток воздуха. Для этого случая исследователи вывели теоретическое уравнение, которое является разновидностью соотношения Грэтца, установленного для тепло- или массоотдачи в круглых трубах при ламинарном течении среды. Досон и Трэсс [38] опубликовали данные по массоотдаче от дна квадратного канала в воду при ее турбулентном движении. [c.232]

    Большая часть данных по массопередаче между жидкостью и стенкой трубы получена при применении колонн со смоченными стенками. Этот аппарат состоит из вертикального отрезка трубы круглого сечения, по которой газ обычно движется вверх. Легколетучая лшдкость стекает по внутренней поверхности трубы и испаряется в поток газа. Основной причиной, по которой колонны со смоченными стенками используются для изучения массопередачи, является определенность межфазной поверхности. Это позволяет определить истинный коэффициент массоотдачи, например кд, вместо произведения кда. Газ обычно слабо растворим в жидкости, так что последняя па границе раздела почти чиста. Шидкость мояшо подавать при адиабатической температуре насы-п] ения Если колонна работает в адиабатических условиях, то жидкость сохраняет свою температуру, когда она стекает вниз по колонне, поэтому концентрация диффундирующего компонепта в газовой фазе у границы раздела постоянна. Колонну со смоченными стенками можно применить как в случае ламинарного, так и в случае турбулентного потока газовой фазы, но требуется осторожная работа во избежание образования волн на границе раздела пар — жидкость, так как волны затрудняют определение межфазной поверхности. [c.518]


Смотреть страницы где упоминается термин Массоотдача при ламинарном потоке жидкост: [c.449]    [c.170]    [c.264]   
Теоретические основы типовых процессов химической технологии (1977) -- [ c.414 ]




ПОИСК





Смотрите так же термины и статьи:

Массоотдача

Массоотдача в ламинарном потоке

Поток ламинарный



© 2025 chem21.info Реклама на сайте