Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Псевдоожиженный слой с пузырями

    При псевдоожижении газами пузыри играют очень важную роль, поскольку, главным образом, именно их присутствием обусловлены различия в свойствах неподвижного и псевдоожиженного слоев. Пузыри видоизменяют поток газа через сист .иу и вызывают перемещение твердых частиц, основным результатом которого является быстрое и интенсивное их перемешивание [c.122]


    Будут рассмотрены и такие характерные для псевдоожиженного к лоя явления, как увеличение размеров газового пузыря, при его движении в псевдоожиженном слое движение в псевдоожиженном слое пузырей, имеющих несферическую форму гидродин ическое взаимодействие газовых пузырей. Будет также рассмотрен вопрос -о связи формы газового пузыря в псевдоожиженном слое и вязкости слоя и ряд других вопросов. [c.120]

    Впервые анализ движения ожижающего агента и твердых частиц вблизи поднимающегося в псевдоожиженном слое пузыря был дан Дэвидсоном [97], В этой работе предполагалось, что [c.120]

    Как уже говорилось выше, такую картину движения газа в окрестности, поднимающегося пузыря можно описать и без использования допущения о потенциальности поля скорости твердой фазы. В данном разделе будет построена математическая модель движения пузыря в псевдоожиженном слое без использования перечисленных выше допущений, причем такая модель хотя и основывается на предположениях, не выполняющихся строго для большей части наблюдаемых в псевдоожиженных слоях пузырей, также отражает основные особенности движения пузырей. Математическая модель движения пузыря, рассматриваемая здесь, основывается на применении следующих двух основных допущений [1281, использование которых позволяет получить аналитическое решение задачи  [c.177]

    У верхней границы псевдоожиженного слоя пузыри, выходя на поверхность, лопаются , выбрасывая вверх частицы мелкозернистого материала. Эта область характеризуется резким падением концентрации мелкозернистого материала (см. область III на рис. 6 и 7). [c.85]

    Практически рабочие скорости фильтрации через полидисперсный слой превосходят скорость свободного витания мелких частиц, в результате чего происходит укос мелких частиц из аппарата. Уносу способствует также выброс частиц из псевдоожиженного слоя пузырями газа. Пузыри газа при выходе из [c.449]

    Подобно газовым пузырям в жидкости, в псевдоожиженном слое пузыри стремятся удлиниться при приближении к поверхности, так что измерения, сделанные сверху, могут привести к систематическим ошибкам. Кроме того, диаметр вспучивания поверхности при подходе пузыря (см. фото IV- ) не обязательно совпадает с диаметром пузыря. В псевдоожиженном слое пузыри разрушаются не под действием сил поверхностного натяжения, как газовые пузыри, достигающие свободной поверхности капельной жидкости, а преимущественно в результате обрушения твердых частиц с крыши пузыря в образующийся кратер .  [c.136]


    Случай 2 [Л -у со, (р оо)]. Эти условия соответствуют интенсивному межфазному обмену, при котором концентрация в плотной фазе равна концентрации в фазе пузырей и, следовательно, — С, = 0. С учетом последнего равенства вместо двухфазной модели псевдоожиженный слой можно рассматривать как однофазную систему, описываемую уравнением [c.130]

    Математическое моделирование процесса в псевдоожиженном слое проведено с использованием двухфазной модели [16]. Расчет показал, что при применении в -реакторе специальных внутренних устройств, разбивающих пузыри и увеличивающих коэффициент межфазного обмена, показатели процесса дегидрирования в псевдоожиженном слое не уступают показателям процесса в трубчатом реакторе, приближающемся к реакторам идеального вытеснения. [c.689]

    Прохождение газа через кипящий слой не является равномерным. Часть газа проходит в виде больших пузырей. Использование результатов экспериментов, проведенных в неподвижном слое, для псевдоожиженного слоя связано с затруднениями, но возможно, если высота слоя относительно велика, диаметр мал, а поток равномерен. При небольших высотах слоя возникает циркуляция в центре слоя твердые частицы движутся вверх, а около стенок — вниз. Для слоя, диаметр которого достаточно велик, перемешивание может быть значительным. При течении, близком к равномерному, для вычисления числа Пекле можно пользоваться зависимостью вида >2  [c.47]

    Псевдоожиженный слой, однако, обладает рядом недостатков. К ним следует отнести неравномерное перемешивание газа с твердыми частицами и возникновение больших газовых пузырей. Следствием неравномерного перемешивания может также быть образование каналов, по которым газ проходит вверх, не контактируя с катализатором. В псевдоожиженном слое может возникнуть чрезмерное истирание зерен из-за их соударения друг с другом и со стенками аппарата. [c.139]

    B. Г. Айнштейна и некоторых других. Наряду с этим отдельные важные проблемы псевдоожиженного состояния, развитые, главным образом, в советских работах, остались, к сожалению, за пределами книги. Так, не освещены вопросы развития газовых струй в псевдоожиженном слое, поднятые в работах Н. А. Шаховой и др., хотя они имеют непосредственное отношение к возникновению газовых пузырей, теоретическое и экспериментальное исследование которых занимает большую часть книги. Совсем не затронуты статистические модели (кинетическая теория) псевдоожиженных систем, развитые в работах Ю. А. Буевича, [c.10]

    Первое иа этих направлений устанавливает различия между жидкостным и газовым псевдоожижением второе обеспечивает получение данных, необходимых для создания промышленных аппаратов наконец, третье позволяет осмыслить физическую сущность явления. Исследования привели к накоплению сведений о форме и скорости подъема пузырей, их влиянии на перемешивание твердых частиц и сопутствующие явления эти исследования, однако, лишь воспроизвели то,- что было ранее известно из существовавших корреляций. Наиболее полное представление о явлении может дать анализ акта зарождения пузырей у распределительной решетки аппарата с псевдоожиженным слоем. [c.25]

Рис. 1-9. Подъем пузырей в псевдоожиженном слое модель увлечения твердых частиц . Рис. 1-9. <a href="/info/145162">Подъем пузырей</a> в <a href="/info/25630">псевдоожиженном слое модель</a> увлечения твердых частиц .
    Для определения вида псевдоожижения необходимо знать скорость ожижающего агента, при которой начинается псевдоожижение слоя (скорость начала псевдоожижения 11 т ), и минимальную скорость, при которой в слое появляются пузыри (скорость возникновения пузырей). Последняя определяет верхний предел однородного псевдоожижения. [c.38]

    При большой плотности твердых частиц наблюдаются отклонения от уравнения (11,9), особенно заметные в случае высоких слоев мелких частиц. Так, при псевдоожижении вольфрама (плотность 9,3 г/смз, размер частиц 776 и 930 мкм) водой образуются отчетливые пузыри и поршни 25, 2в Цри ожижении свинцовой дроби водой также образуются неоднородные псевдоожиженные слои 2 29. По мнению Андерсона и Джексона зо, режим псевдоожижения в таких системах должен быть переходным. В других работах [c.50]

    Образование больших газовых пузырей в псевдоожиженном слое можно предотвратить путем размещения в нем стандартных насадок в этих случаях говорят о псевдоожижении в слое насадки. Псевдоожижению в слое проволочных колец Рашига размером 6,4 и 12,7 мм подвергали частицы никеля, свинца, стекла, песка и пластмассы (0,5—1,5 мм) опыты вели с воздухом, двуокисью углерода и гелием в колоннах диаметром от 5,1 до 30,5 см. Был установлено, что для описания расширения псевдоожиженного слоя в просветах насадки применимо уравнение (11,9), причем п изменяется в пределах 2,4—3,8, что хорошо согласуется со значениями, вычисленными по уравнению (11,12). Здесь нет, однако, полной аналогии с однородными псевдоожиженными системами, так как проволочная насадка не предотвращает, а может даже способствовать образованию мелких пузырей. [c.57]


    Благодаря тесному взаимодействию ожижающего агента и твердых частиц во всех точках псевдоожиженного слоя характеристики их движения связаны между собой. При однородном псевдо-ожижении система обычно интенсивно перемешивается, тогда как в неоднородном слое поток ожижающего агента через непрерывную фазу является преимущественно потенциальным, и перемешивание осуществляется в основном за счет барботажа пузырей. Обзор исследований по перемешиванию в псевдоожиженном слое за последние годы выполнен Ганном . [c.63]

    В процессе подъема в псевдоожиженном слое пузыри коалесцируют и разрушаются. При достаточной высоте слоя и сравнительно небольшом диаметре аппарата пузырь может занять все его поперечное сечение — возникает порщневой ПС (рис.2.34, в), когда газовые пробки перемежаются по высоте с поршнями зернистого материала. Если материал плохо псевдо-ожижается (влажный материал очень мелкие частицы, склонные к слипанию из-за большой поверхностной энергии частицы по форме сильно отличаются от сферических и т.п.), то в слое образуются каналы (рис.2.34, г). Через них и проходит основная часть газа, а твердый материал между каналами остается непсевдоожиженным для вовлечения его в псевдоожижение приходится механическим или каким-либо иным способом разрушать эти каналы. Наконец, подвод механической энергии может частично или полностью заменить воздействие 0А примером здесь может служить вибропсевдоожиженный слой, когда частицы перемещаются в аппарате в результате наложения вибрации, или виброкипящий — при одновременном наложении вибрации и воздействия потока ОА. [c.226]

    Сопоставление с экспериментальными данными Харрисона и Льюнга [43]. Максимальный размер пузырей при различных высотах слоя над местом ввода пузыря определялся для системы песок—воздух с помощью киносъемки свободной поверхности псевдоожиженного слоя. Пузыри создавались пропусканием независимого потока воздуха, подводимого через инжек-ционную трубку в основание псевдоожиженного слоя. Результаты этого эксперимента, проведенного с инжекционной трубкой диаметром от 1,25 до 9,4. их в аппарате диаметром 152,4 жл , представлены на рис. 20. Экспериментальные точки, как можно видеть из этого рксунка, находятся в приемлемом соответствии со ступенчатыми сплошными линиями, полученными путем расчета методом последовательных приближений. [c.67]

    На фото 8 и 9 (см. стр. 166) демонстрируется псевдоожижение свинцовой дроби, в одном случае—воздухом, а в другом— водой [23]. Введенные в псевдоожиженный слой пузыри ведут себя в этих случаях различно. Пузыри воздуха, введенные 3 слой свинцовой дроби, псевдоожиженной воздухом, вполне устойчивы при этом пузырь удлиняется, если его эквивалентный диаметр превышает поперечный размер сосуда. Водяные пузыри, введенные в слой свинцовой дроби, псевдоо жнжен-ной водой, напротив, весь.ма неустойчивы они разрушаются твердым материалом, попадающим в основание пузыря из движущегося за ним гидродинамического следа. Каждая из представленных фотографий соответствует отдельному опыту. Необходимо от.метнть, что хотя приведенные фотографии определенно свидетельствуют о некотором различии в поведении системы с газом и капельными жидкостями, но оба случая относятся к неоднородному (агрегативному) псевдоожижению в его обычно принятом смысле. [c.101]

    Действительно, давно было замечено, что при ожижении твердых частиц газами псевдоожиженный слой не однороден [189]. Он представляет собой слой взвешенных частиц с достаточно низкой порозностью, в котором поднимаются заполненные газом свободные от частиц полости, получившие название пузырей. Во время подъема пузыри могут увеличиваться в размерах, коалесцировать, что иногда приводит к образованию поршневого режима псевдоожижения, представляющего собой чередование сгустков частиц и газовых полостей, занимающих все сечение аппарата. Поршневой режим движения твердой фазы наблюдается также и при транспортировании твердых частиц газом в вертикальных трубах. Ряд авторов, первым из которых бьш, по-видимому, Уоллис [94], вьщвинули предположение, согласно которому пузыри и поршни являются следствием нарастания всегда присутствующих в потоке малых возмущений порозности. Однако в экспериментах неустойчивость наблюдается далеко не во всех дисперсных потоках. Так, ожи-жаемые жидкостью слои небольших твердых частиц из не слишком плотного материала однородны. Опыты по ожижению частиц газами при высоком давлении указьгеают на явный переход от однородного режима псевдоожижения к пузырьковому в случае увеличения скорости газа [190]. Не наблюдаются неоднородности и при движении небольших капель и пузырей в жидкостях. [c.134]

    Существовавшие теории, относящиеся в основном к псевдоожиженным слоям, не могли дать удовлетворительного объяснения наблюдаемым явлениям. Резуттьтаты, полученные Андерсоном и Джексоном [181], которые провели расчеты скоростей роста возмущений порозности в различных псевдоожиженных слоях, показывали, что в системах газ — твердое тело возмущения растут значительно быстрее, чем в системах жидкость - твердое тело. Однако объяснить, почему в слоях, ожижаемых жидкостью, пузыри не возникают даже при очень большой высоте слоя, они не могли [189]. Вместе с тем, в ряде работ [152, 185, 186, 191] было 134 [c.134]

    Материал камеры определяется параметрами процесса и свойствами продукта. Как правило, аппараты с псевдоожиженным слоем изготовляют из углеродистой и кислотостойкой стали, но для высокотемпературных процессов применяют камеры, футерованные огнеупорами. Наиболее ответственные элементы аппарата с псевдоожиженным слоем — газораспределительные устройства, так как от их конструкции в значительной степени зависят характер и размеры образующихся пузырей и застойных зон, т. е. качество псевдоожижения. Распределительные устройства должны обеспечивать равномерное распределение газа по сечению аппарата, иметь небольшое гидравлическое сопротивление, быть простыми, 1[адежными в работе. На практике все эти требования не всегда возможно совместить. [c.178]

    Твердый материал можно вводить с помощью транспортной линии или стояка в основание псевдоожиженного слоя и выводить такое же его количество через сливной порог у свободной поверхности слоя. Аналогично, можно вводить твердые частицы в трубу сверху и выводить снизу. Оба случая представляют собой в чистом виде восходящий и нисходящий потоки твердого материала в плотной фазе они изображены несколько утрированно кривыми PQ и на рис. 1-4. Нисходящий поток твердых частиц в плотной фазе навстречу восходящим газовым пузырям, применяемьгй в некоторых процессах, использующих аэрируемые стояки или пневматические подъемные линии, также изображается линией [c.22]

    Широкое теоретическое и экспериментальное изучение явления образования пузырей при истечении из единичного отверстия в жидкостях и псевдоожиженных системах было проведено Дэвидсоном и Харрисоном Они показали, что в исследованном Харрисоном и Льюнгом диапазоне объемы пузырей, образующихся в псевдоожиженном слое мелких частиц и в жидкости, близко совпадают при o7 инaкoвыx диаметрах отверстия и расходах газа. Эти данные, однако, относятся к скоростям в отверстиях, по крайней мере, на порядок меньшим, чем необходимо на практике для обеспечения нормального газораспределения в решетках с множеством отверстий. Как показано Зенцем вход газа в псевдоожиженный слой при практически интересных скоростях следует совершенно иным закономерностям. Данные Харрисона и Льюнга, если их представить в координатах рис. 1-8, укладываются на [c.28]

    Измерения сопротивления потока показали , что стенки полости менее устойчивы, чем ее крыша, Если скорость газа через крышу полости будет недостаточно высока и единичные частицы начнут падать вниз, то частицы над ними определенно потеряют устойчивость и произойдет обрушение крыши. Такое поршнеобразное обрушение вызовет уменьшение объема полости, что приведет к восстановлению скорости на поверхности раздела, несмотря на отделение полости от струи газа из отверстия решетки. Частицы, обтекающие полость и движущиеся к ее основанию, также стремятся сжать газ и, замещая его, вытеснить через крышу полости. Это легко может быть продемонстрировано, если внести пузырь в слой непсевдоожиженного зернистого материала по мере подъема пузыря наблюдается сокращение его объема. В псевдоожиженном слое, где частицы в непрерывной фазе, входящие в основание полости, сами пронизываются потоком со скоростью сокращения объема пузыря не происходит из пузыря уходит то же количество газа. [c.29]

    Движение пузырей в системах газ — жидкость и газ — псевдоожиженный слой происходит, таким образом, по одинаковым законам. Это с очевидностью следует из того факта, что зависимость скорости нисходящего движения твердых частиц в кольцевом слое йокруг пузыря была получена из эксперимента по истечению псевдоожиженных твердых частиц из отверстий. Для корреляции данных было использовано обычное для жидкостей выражение [c.31]

    Если скорость газового (жидкостного), потока (ожижающего авента) превышает минимальную величину, необходимую для возникновения псевдоожиженного слоя, то либо последний продолжает расширяться за счет увеличения среднего расстояния между твердыми частицами, либо избыток ожижающего агента проходит через слой в виде пузырей, образуя двухфазную систему. Эти два вида псевдоожижения можно соответетмнно рассматривать как однородное и неоднородное. Однородное псевдоожижение наблюдается, как правило, в системах жидкость — твердое тело , а также чгаз — твердое тело — при очень малых размерах твердых частиц и в овраниченном интервале скоростей. Неоднородное псевдоожижение характерно для всех других систем газ — твердое тело , а иногда — в случае высокой плотности твердых частиц и для жидкостного псевдоожижения. [c.37]

    Теоретические исследования устойчивости малых возмущений концентрации твердых частиц в однородном псевдоожиженном слое показали, что скорость роста малых пузырей при газовом псевдовжажении вбтнв больше, чем при жидкостном. [c.37]

    Полагают, что вид псевдоожижения зависит от максимально возможного размера стабильного газового пузыря в псевдоожиженном слое. Если скорость циркуляции газа внутри пузыря (обычно, приблизительно равная скорости его подъема) превышает скорость витания твердых частиц uf, то последние всасываются в пузырь через его основание, и пузырь разрушается. Так как скорость подъема пузыря возрастает с увеличением его объема и пракпияевки не зависит от свойств псевдоожиженного слоя , то максимальный размер стабильного пузыря растет с увеличением скорости витания твердых частиц. Если размер пузыря превышает диаметр частиц, например, в 10 раз, то пузырь становится видимым и псевдоожижение будет неоднородным. Если же размеры пузыря соизмеримы с диаметром твердых частиц, то псевдоожижение можно считать однородным. Для характеристики вида псевдоожижения [c.37]

    В псевдоожиженном слое существуют благоприятные условия для тепло-и массообмена между твердыми частицами и ожижающим агентом происходит быстрое перемешивание твердых частиц. При атом коэффициенты теплообмена с наружной поверхностью аппарата весьма высоки, поэтому аппараты с псевдоожиженным слоем используют как теплообменники и хими-ческие реакторы, особенно в тех случаях, когда требуется тонкое регулирование температуры и когда системе нужно сообщать (или отеодить ив нее) большие количества тепла. В связи с атим необходимо выяснить характер движения ожижающего агента и твердых частиц. По внешнему виду поток ожижающего агента в псевдоожиженном слое кажется турбулентным. Однако при скоростях, близких к скорости начала псевдоожижения, и в непрерывной фазе неоднородного слоя с барботажем пузырей движение потока обычно является ламинарным этот режим нарушается только в сильно расширенном Однородном слое и при использовании крупных твердых частиц. [c.38]

    Обмен газом между непрерывной и дискретной фазами внутри слоя является важным фактором, требующим обязательного учета при расчете реакторов с псевдоожиженным слоем. Рассмотрение поведения пузырей не входпт в задачу данной главы однако, следует иметь в виду, что пузыри могут влиять на гидродинамическую обстановку в непрерывной фазе, а это существенно нри выборе техники измерений. [c.54]

    Ufs — скорость полного псевдоожижения слоя Ui — значение i/ при порозности, равной 1 и mb — скорость в момент возникнояевия пузырей Umf— скорость начала псевдоожижения Uf — скорость витания частицы Uf — скорость жидкости в поровом канале е — порозность слоя бть — порозность слоя при скорости в момент возникровения пузырей [c.69]


Смотреть страницы где упоминается термин Псевдоожиженный слой с пузырями: [c.663]    [c.152]    [c.171]    [c.663]    [c.144]    [c.21]    [c.11]    [c.16]    [c.25]    [c.53]    [c.54]    [c.85]   
Промышленное псевдоожижение (1976) -- [ c.104 , c.131 , c.144 ]




ПОИСК







© 2025 chem21.info Реклама на сайте