Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Расплавы электродные процессы

    Чаще всего электроды состоят из проводника первого рода (металл, уголь) и проводника второго рода (раствор или расплав электролита). Потенциалопределяющие (электродные) процессы представляют собой окислительно-восстановительные реакции, которые можно записать в общем виде  [c.466]

    Топливные элементы. Для непосредственного преобразования тепловой энергии сгорания топлива в электрическую служат топливные элементы. Топливный элемент работает благодаря непрерывно поступающим в него и разделенным в пространстве электролитом окислителю и восстановителю. Проходя через пористые электроды, изготовленные из спрессованного графита, и контактируя с электролитом, восстановитель окисляется, а окислитель восстанавливается. Разность электродных потенциалов определяет напряжение элемента. Электролитом может служить раствор кислоты или щелочи, расплав соли. В качестве окислителей берут кислород или воздух, а как восстановители берутся водород, горючие г азы или жидкости. Электродные процессы при работе топливного элемента состоят из двух полуреакций окислительно-восстановительной реакции. Например, в водородно-кислородном топливном элементе с раствором щелочи в качестве электролита протекают следующие процессы  [c.683]


    Химические превращения в растворах или расплавах на электродах из проводников первого рода, при которых происходит перенос заряда через границу между электродом и электролитом, называются электродными процессами. Эти процессы можно разделить на две группы, тесно связанные друг с другом. Во-первых, это возникновение разности потенциалов и электрического тока в гальванических элементах. Во-вторых, обратные им химические процессы, которые имеют место при прохождении постоянного электрического тока через раствор или расплав, называемые электролизом. [c.214]

    Следует различать понятия — электродный процесс и электрохимическая реакция. Под электродным процессом подразумевается вся совокупность явлений — электрохимических, химических, адсорбционных и диффузионных, которые происходят при пропускании электрического тока через раствор (расплав) и через границу фаз электрод — электролит. [c.15]

    В расплав вещества погружают инертные электроды, являющиеся лишь проводниками электронов и не принимающие участия в окислительно-восстановительных электродных процессах. Один из них — катод — подключен к отрицательному полюсу генератора электрического тока, другой — анод — к положительному полюсу. К катоду притягиваются положительные ионы вещества (названные вследствие этого катионами), к аноду — отрицательные ионы (анионы). [c.275]

    Если электродная реакция проходит в равновесных обратимых условиях (при токе, стремящемся к нулю), скачок. потенциала между электродом и электролитом называют равновесным потенциалом. Если к погруженному в раствор металлу приложить напряжение, на бесконечно малую величину превышающее равновесный потенциал, но обратного знака, процесс, определяющий равновесный потенциал, пойдет в обратную сторону. Если первоначально металл растворялся, то произойдет выделение его на электроде — электролиз. Однако продолжительный электролиз в таких условиях осуществить не удается, так как происходящее нарушение электронейтральности раствора (выведение положительно заряженных ионов) мгновенно создаст противо-э. д. с., процесс прекратится. Для осуществления продолжительного электролиза необходимо производить одновременную разрядку отрицательных ионов раствора на второ.м электроде (аноде) или восполнение убыли положительных ионов за счет растворения анода. Поскольку анод, погруженный в раствор (расплав), также обладает определенным потенциалом, то для осуществления электролиза в равновесных условиях необ-ходи.мо приложить внешнее напряжение, равное сумме равновесных потенциалов анода и катода плюс бесконечно малая величина. Сумма равновесных потенциалов анода и катода называется напряжением разложения. [c.258]


    При реагировании в слое влияние золы на процесс реагирования оказывается более существенным. Наблюдения Н. П. Вознесенского за горящей поверхностью при помощи микрокиносъемки показали, что даже при горении таких малозольных топлив, как древесный и электродный уголь, на реагирующей поверхности образуется пленка в виде рыхлой массы золы. При повышенных скоростях омывания кусочков угля эта пленка сдувается и становится тоньше (0,2—0,3 мм). При высокой зольности угля па реагирующей поверхности в зависимости от состава золы и температуры ироцесса может образоваться или спекшаяся твердая корка или жидкий расплав, затрудняющий диффузию газовых молекул. При образовании расплава золы (шлака) газопроницаемость слоя топлива нарушается, образуются прогары, и процесс реагирования расстраивается. Когда зола в процессе реагирования остается сыпучей, она заполняет пространство между частицами топлива, раздвигает нх, что приводит к уменьшению реакционной поверхности в единице объема. Это обстоятельство, наряду с увеличением сопротивления диффузионному переносу в связи с наличием пленки золы на реакционной поверхности, приводит к растяжению зоп реагирования. Характер влияния золы на процесс реагирования может быть различным в зависимости от того, в какой области реагирования протекает процесс. [c.204]

    Как уже отмечалось, результаты настоящей работы указывают яа то, что основным процессом, протекающим на границе стекло -расплав, является ионообменный. Химическое же разрушение стекла (растворение или выщелачивание) не происходит, чей, видимо, и можно объяснить сравнительно быстрое установление стабильных электродных потенциалов (в отличив от данных исследований в расплавах хлоридов солей [2, 3j). [c.183]

    Через графитовые брусья, играющие роль электродов, подводится электрический ток, проходящий через расплав, т. е. в этом случае процесс аналогичен процессу, происходящему в соляной ванне А электродного типа (см. рис. 1-13). [c.248]

    Ионика и электродика исследуют как равновесные, так и неравновесные явления и процессы. Изучение свойств ионных систем в равновесных условиях позволяет развить представления о строении растворов и расплавов электролитов и твердых электролитов, тогда как измерения в неравновесных условиях дают сведения об электропроводности ионных систем, а также о кинетике ионных реакций. В электро-дике исследованием равновесий на границе электрод — раствор (расплав) занимается электрохимическая термодинамика. Измерения скоростей процессов на этой границе и выяснение закономерностей, которым они подчиняются, составляют объект кинетики электродных процессов или электрохимической кинетики. В настоящее время кинетика электродных процессов представляет собой одно из наиболее быстро развивающихся направлений теоретической электрохимии. [c.6]

    В пособии рассматриваются основные вопросы теории строения заряженных границ раздела фаз и кинетики электродных процессов, а также развитие теоретических представлений о строении двойного слоя. Приводятся краткие сведения о строении двойного электричсско1 о слоя на границах раздела раствор — диэлектрик (воздух), расплав — металл и раствор — полупроводник. Излагаются закономерности электрохимической кинетики, связанные с подводом реагирующего вещества к понерхности электрода, физические основы современной квантово-механической теории электродных процессов. Описаны процессы электроосаждепия, анодного растворения и теории коррозии металлов. [c.384]

    ЭЛЕКТРООКИСЛЕНИЕ, см. Электродные процессы. ЭЛЕКТРООСАЖДЕНИЕ, выделение металла на катоде в виде плотного или порошкообразного осадка. Происходит при пропускании тока через р-р или расплав, содержащий ионы данного металла, при условии установления на катоде потенциала ф , достаточного для электровос-становления ионов до металлич. состояния. Значение определяется природой металла и р-ра, концентрацией в р-ре иопов осаждаемого металла и присутствием других ионов, комплексообразователей и ПАВ, т-рой и pH р-ра. Количеств, показатель Э.— выход металла по току (см. Электролиз). На Э. основано извлечение, очистка и разделение металлов в пром-сти и аналитич. химии, получение гальванич. покрытий, металлич. порошков, копий и матриц (см. Гальванотехника). [c.702]

    Определение растворимости водорода.хлора и ки< лорода в расплавах. Электродные процессы в распла вах с участием водорода, хлора и кислорода привл кают внимание исследователей в связи с развитие электрохимии топливных элементов. В этом отнонк НИИ значительный интерес представляет изучение зг кономерностей электродных процессов в расплава карбонатов, поскольку этот электролит применяете в высокотемпературных топливных элементах [382 Растворимость газообразных веществ в расплава находят по уравнению Сэнда. Величина произведени однозначно связана с величиной растворимост водорода, хлора или кислорода в расплаве, если меж ду газами и компонентами расплава отсутствует ка кое-либо химическое взаймодействие [383, 384]. [c.174]


    Так как поляризация электродов в расплавленных ионных электролитах является преимущественно концентрационной, кинетика электродных процессов тесно связана с диффузионными характеристиками ионов выделяющихся металлов. Коэффициенты диффузии ионов гафния в хлоридных и фторидно-хлоридных расплавах определялись хронопотенциометрическим методом в области концентраций 0,75—2,85 масс.% гафния при температурах 680—860° С [93]. Гафний во фторидно-хлоридный расплав вводился в виде KaHfFg, катодная плотность тока была 0,15—0,4 а/см . Найдено, что зависимость коэффициентов диффузии ионов четырехвалентного гафния от температуры в хлоридном расплаве выражается равенством [c.124]

    Основное назначение сепараторов ХИТ — предотвращать прямой контакт разноименных электродов во из--бежание короткого замыкания. Поэтому сепараторы изготовляют из диэлектрических материалов, а внутренняя электрическая цепь обеспечивается за счет ионной проводимости электролита, заполняющего поры или промежутки в несплошном сепараторе. В зависимости от особенностей электродных процессов и физико-хими-ческих свойств активных масс появляются дополнительные функции сепаратора механически удерживать активную массу, противодействуя разрушению электрода или росту дендритов препятствовать проникновению продуктов разряда одного электрода к поверхности другого, устраняя вредные побочные реакции обладать газопроницаемостью. В элементах с матричным электролитом сепаратор становится электролитоносителем, удерживающим капиллярными силами жидкий раствор или расплав у поверхности электродов. [c.33]

    Вместе с тем, поскольку электродные реакции протекают на границе электрод — раствор (или расплав), представляет интерес вопрос о работе выхода электронов из металла в раствор (или расплав) при заданном электродном потенциале. За пределами двойного слоя потенциал в любой точке раствора (или расплава) одинаков, следовательно, одинаков и электрохимический потенциал электрона. Поэтому работа выхода электрона в раствор (или расплав) электролита при заданном электродном потенциале не зависит от природы металла. Этот вывод нашел прямое экспериментальное подтверждение в опытах по фотоэмиссии электронов из металла в раствор электролита, а также в опытах по катодной генерации сольватированных электронов в апротонных растворителях. На рис. VIII.24 представлены катодные поляризационные кривые в гексаметилфосфортриамиде на различных металлах (Л, И. Кришталик, Н. М. Алпатова). Нижняя группа прямых характеризует зависящее от природы металла катодное выделение водорода в подкисленных растворах солей. Верхняя прямая отвечает процессу генерации сольватированных электронов на различных катодах. Практическое совпадение прямых для разных металлов демонстрирует независимость работы выхода электронов из металла в раствор от природы металла. [c.240]

    Ряд стандартных электродных потенциалов. Раздел химии, который изучает процессы с участием заряженных частиц (ионов, электронов), называется электрохи-жмеа. электрохимии электродом принято называть систему, котор ая состоит из токопроводящего материала (металла, графита и др.), погруженного в раствор или расплав электролита. [c.110]


Смотреть страницы где упоминается термин Расплавы электродные процессы: [c.415]    [c.70]    [c.128]    [c.347]    [c.349]   
Двойной слой и кинетика электродных процессов (1967) -- [ c.180 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика электродных процессов при электролизе солевых расплавов

Кинетика электродных процессов при электролизе солевых расплавов, содержащих хлористое олово

Методы исследования кинетики электродных процессов в солевых расплавах

Процесс электродные

Электродный процесс Процесс электродный



© 2024 chem21.info Реклама на сайте