Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Проводники ионные и электронные

    Электрохимическая кинетика (кинетика электродных процессов) является разделом химической кинетики и основывается на ее общих законах. К особенности электрохимических процессов на электродах относится то, что они протекают на границе электронный проводник — ионный проводник тока, причем все электродные реакции протекают с участием электронов. [c.380]


    Различают две основные формы проводимости электронную и ионную. Электронной проводимостью обладают, например, металлы в твердом и расплавленном состоянии. Электрический ток ио этим проводникам передается потоком электронов аналогично потоку газов в трубе в паправлении от катода цепи к аноду. [c.120]

    Растворы отделены друг от друга пористой (керамической) перегородкой, препятствующей их смешению, но обеспечивающей прохождение электрического тока. Такой элемент был сконструирован русским электрохимиком Б. С. Якоби. На обоих электродах образуются двойные электрические слои. Величина и знак электрических зарядов в двойных слоях определяются работой удаления электрона из металла и энергией гидратации его ионов. Б раствор будут легче переходить те металлы, у которых меньше работа выхода электронов и больше энергия гидратации ионов, т. е. менее благородные металлы. Так как цинк менее благороден, чем медь, то он зарядится более отрицательно по сравнению с медью. Если электроды соединить проводником, то электроны будут перемещаться от цинка к меди. При этом ионы цинка уходят из двойного слоя в объем раствора, а электроны, перешедшие на медный электрод, разряжают ионы меди. [c.156]

    Ионные проводники — это растворы и расплавы электролитов, проводимость в них осуществляется перемещением положительных и отрицательных ионов. Характерной особенностью их является то, что в месте подвода тока посредством металлического контакта (проводника с электронной проводимостью) меняется механизм передачи тока, ионы разряжаются, а нейтральные частицы приобретают заряд и таким образом происходят различные химические превращения. [c.179]

    Электрохимическая система состоит из двух электродов и ионного проводника между ними. Электроды замыкаются металлическим проводником. Ионным проводником (проводником 2-го рода) служат растворы или расплавы электролитов, а также твердые электролиты. Электродами называются проводники, имеющие электронную проводимость (проводники 1-го рода) и находящиеся в контакте с ионным проводником. Для обеспечения работы системы электроды соединяются друг с другом металлическим проводником, называемым внешней цепью электрохимической системы. [c.183]

    Электропроводность растворов электролитов. Различают две основные формы проводимости электричества в проводниках электронную и ионную. Электронной проводимостью обладают металлы, ионной — расплавы и растворы электролитов. В растворах электролитов перенос электричества осуществляется за счет перемещения ионов. Количественной характеристикой способности растворов переносить электрический ток является электропроводность. Электропроводность есть величина, обратная сопротивлению в свою очередь сопротивление Я зависит от длины проводника /, площади поперечного сечения х и удельного сопротивления р  [c.222]


    Отводные трубки из сосудов / и 2 опущены в сосуд 3 с раствором хлорида калия. Последний служит для устранения так называемого диффузионного потенциала, т. е. потенциала, возникающего на границе двух растворов. Если соединить электроды металлическим проводником, то электроны будут двигаться от цинка к платине, где они поглощаются ионами 11+. Цинковая пластинка при этом заряжена отрицательно, а платиновая — положительно. [c.157]

    Хотя закон Фарадея и не имеет исключений в применении к границе между проводником первого рода и проводником второго рода (к границам, в которых участвуют смешанные проводники с ионно-электронной проводимостью, он, очевидно, неприменим), на практике приходится встречаться с кажущимися отклонениями от этого закона. [c.18]

    Возьмем случай, когда доставка ионов к катоду идет быстро, но скорость разряда невелика очевидно, что при этом поляризация будет вызвана в основном тем, что металл или другой проводник первого рода будет замедленно передавать реагирующим частицам (молекулам, атомам или ионам) электроны. [c.241]

    Если соединить оба электрода проводником, то электроны будут переходить от цинка к меди — элемент дает электрический ток. При этом ионы Zn + удаляются из двойного электрического слоя в раствор, а их места занимают новые ионы из электрода, т. е. цинк растворяется. На медном электроде электроны соединяются с Си + и выделяется медь. Двойной слой вблизи электрода пополняется ионами Си + из объема раствора. Перенос электричества внутри элемента, таким образом, осуществляется ионами. Работа элемента возможна благодаря протеканию пространственно разделенных процессов Zn (т) =Zn ++2e и u2++2o= u(t), сумма которых есть самопроизвольная реакция [c.116]

    В электрохимических системах (электролитных ваннах или химических источниках электрической энергии — элементах) особое значение приобретают электродные электрохимические реакции, протекающие с поглощением либо отдачей молекулами, атомами или ионами электронов. Именно контакт находящихся в электролите частиц реагирующего вещества с поверхностью электрода (электронным проводником) определяет собой особенности превращения электрической энергии в химическую и обратно. Уже отмечалось, что по этой причине механизм электрохимических процессов существенно отличается от обычного химического превращения материи, когда между реагирующими частицами вещества в растворе (расплаве) имеется непосредственный контакт. [c.23]

    Хотя законы Фарадея и не имеют исключений в применении к границе между электронным проводником (первого рода) и ионным проводником (второго рода), к границам между проводниками со смешанной ионной— электронной проводимостью они неприменимы, на практике приходится встречаться с кажущимися отклонениями от этих законов  [c.30]

    Если системы (13,2) и (13.3) объединить в одну,соединив цинковую и медную пластины металлическим проводником с электронной проводимостью, а растворы гпЗО и СиЗО —электролитическим проводником с ионной проводимостью, то получится замкнутая неравновесная система— гальванический элемент, схема которого приведена на рис. 13.1. Поскольку потенциалы электродов различны, по соединяющему их металлическому проводнику (II) перемещается поток электронов—электрический ток. Для восстановления равновесного потенциала цинкового электрода цинк должен переходить в раствор. Увеличение же отрицательности потенциала медного электрода за счет переместившихся электронов повлечет разрядку части ионов и выделение из раствора металлической меди на медном электроде. В результате около цинкового электрода электролит приобретает избыточное число положительно заряженных ионов по сравнению с исходным, а около медного электрода образуется недостаток ионов 50 -. Результатом различия заряда ионных растворов будет ионный [c.141]

    Однако оба процесса обратимы. Поэтому выделившийся на катоде водород может снова восстанавливаться и переходить в раствор в виде ионов, отдавая электроны платиновому проводнику. Эти электроны по проводу поступают на другой электрод, содержащий кислород, и равновесие (12.2) смещается влево. [c.217]

    Особенности работы пористых электродов [1]. В большинстве ХИТ (кислотные, щелочные аккумуляторы, марганцево-цинковые, ртутно-цинковые элементы, водородно-кислородные топливные элементы) электроды (оба, реже один) являются пористыми. В пористых электродах имеется высокоразвитая поверхность раздела трех фаз (активного вещества, электролита— проводника с ионной проводимостью проводника с электронной проводимостью). Наличие большой истинной внутренней поверхности Е по сравнению с внешней геометрической 5 поверхностью позволяет получать при использовании ХИТ большой ток при небольшой поляризации. [c.55]

    Известно, что существуют две основные причины прохождения электрического тока через проводники либо за счет движения электронов в электрическом поле, либо за счет движения ионов. Электронная проводимость присуща, прежде всего, металлам. [c.108]


    Возникновение разности потенциалов между обоими металлическими электродами объясняется различной склонностью металлов отдавать катионы в раствор электролита. У поверхности каждого из электродов возникает двойной электрический слой (см. рис. 60), который оказывает противодействие дальнейшему переходу катионов в раствор. Если оба металла соединить металлическим проводником (обладающим электронной проводимостью), то вследствие электропроводимости раствора электролита ионной проводимости) получается замкнутая электрическая цепь (рис. 62). [c.215]

    Согласно наиболее общему определению, принятому в настоящее время большинством исследователей, электрохимия — это наука, которая рассматривает физико-химические свойства ионных проводников, а также явления, имеющие место на границах контакта ионных проводников с электронными проводниками или полупроводниками, с другими ионными проводниками или с диэлектриками (в частности, на границе с вакуумом или с газами). Все эти свойства и явления изучаются как в равновесных условиях в отсутствие прохождения электрического тока, так и в неравновесных условиях, когда через систему протекает электрический ток. Электрохимию в некотором смысле можно противопоставить теории твердого тела и электронике, в которых рассматриваются свойства электронных проводников и электронно-дырочных полупроводников, а также явления при контакте этих материалов между собой и с вакуумом. [c.12]

    В гальванической цепи по крайней мере в двух местах электронные проводники контактируют с ионными. Электронный проводник, контактирующий с ионным проводником, называют электродом, [c.23]

    I к И — проводники первого (электронный) и второго (ионный) рода 1 и 2 — электродные потенциалы А и К — электроды внутренней цепи. [c.351]

    Образование на аноде поверхностного слоя, состоящего из окислов (или другого нерастворимого покрытия), создает на металлической поверхности совсем новую ситуацию. Дальнейшее протекание анодного процесса зависит от того, какими электрическими, механическими и химическими свойствами обладает этот слой. С точки зрения электрических свойств основное значение имеет характер проводимости осажденного слоя является ли он изолятором или проводником (ионным или электронным). [c.192]

    Общая характеристика газовых электродов. Любой газовый электрод представляет собой полуэлемент, состоящий из металлического проводника, контактирующего одновременно с соответствующим газом и с раствором, содержащим ионы этого газа. Конструирование газового электрода и измерение потенциала системы газ — раствор ионов газа невозможно без- участия металлического проводника, так же как любой электрод немыслим без проводника с электронной проводимостью. Однако металл в газовых электродах не только создает электронно-проводящий электрический контакт между газом и раствором его ионов, но и ускоряет медленно устанавливающееся электродное равновесие, т. е. служит катализатором. Следовательно, в газовых электродах могут быть использованы не любые металлы, а лишь те, которые обладают высокой каталитической активностью по отношению к реакции газ — ионы газа в растворе. Кроме того, потенциал металла в газовом проводнике не должен зависеть от активности других ионов, присутствующих в растворе, в частности от активности собственных металлических ионов. Являясь катализатором реакции между газом и его ионами в растворе, металл газового электрода в то же время должен быть инертным по отношению к другим возможным реакциям. Наконец, металл в газовом электроде должен обеспечивать создание по возможности большей поверхности раздела, на которой могла бы протекать обратимая реакция перехода газа в ионное состояние. Всем этим требованиям лучше всего удовлетворяет платина, которая чаще всего и используется при конструировании газовых электродов. Для создания развитой поверхности платину покрывают электролитически платиновой чернью, получая так называемую [c.163]

    В твердых телах протекание электрического тока обусловлено переносом зарядов либо ионами (электрические или ионные проводники), либо электронами (электронные проводники). По величине электропроводности электронные проводники подразделяют на три класса металлы, полупроводники и изоляторы (диэлектрики) . Примерные области значений удельной электропроводности х, характерные для этих классов, представлены ниже  [c.274]

    Однако процессы (1) и (2) обратимы. Поэтому выделившийся на катоде водород может снова переходить в раствор в виде ионов, отдавая электроны платиновому проводнику. Эти электроны по проводу поступают на другой электрод, содержащий кислород, и равновесие (2) смещается влево. Таким образом, при электролизе возникает гальванический элемент, ток которого направлен в сторону, обратную движению тока от внешнего источника. Поэтому ток от внешнего источника будет идти через электролит только в том случае, если приложенное напряжение будет достаточно для определенного химического процесса, а именно для электролитического разложения раствора или для образования ионов из 1к1ате-риала электрода. Необходимое для этой цели напряжение называется напряжением разложения и зависит, прежде всего, от состава раствора. [c.191]

    Как известно, в растворах электролитов протекание тока обеспечивается дв(ижением ионов, а в металлических проводниках— движением электронов. Поэтому на границе металлический электрод — раствор протекает электрохимическая реакция, в которой ионы принимают от электрода или отдают ему электроны (восстанавливаются или окисляются). Количественное соотношение между массой прореагировавшего вещества и количеством электричества известно как объединенный -закон Фарадея. Количество прореагировавшего вещества т так относится к его молерч лярной массе М, как количество электричества а, протекшего в цепи, относится к количеству электричества пР, необходимому для превращения одного моля вещества  [c.309]

    Изменение свойств оксидного слоя при поляризации электрода было обнаружено при изучении пассивации никеля в кислых растворах по-тенциостатическим и эллипсометрическим методами. В активной области на поверхности электрода образуется предпассивирующий оксидный слой толщиной в несколько нанометров. При потенциале пассивации толщина этого слоя не изменяется, тогда как показатель преломления и коэффициент светопоглощения претерпевают резкое изменение. Предполагается, что оксидный слой при потенциале пассивации превращается из ионного проводника в электронный проводник. При этом диффузия ионов металла через оксидный слой становится невозможной, и процесс растворения металла прекращается. [c.369]

    Электроды — проводники, обладаюидие электронной проводимостью и контактирующие с раствором электролита. С помощью электродов осуществляют подвод (или отвод) электроэнергии от электрохимического устройства. В зависимости от проводимого процесса электроды имеют различное назначение. В химических источниках тока материал электрода, как правило, принимает участие в токообразующей реакции, растворяясь или изменяя свой химический состав. При получении химических продуктов в большинстве случаев электроды в реакции не участвуют, а служат только для подведения электричества к границе электрод-раствор, где протекает электрохимическая реакция. В гальванотехнике и гидроэлектрометаллургии на отрицательно заряженном электроде— катоде происходит выделение металла. В этих процессах, как правило, используются растворимые аноды, материал которых обогащает раствор ионами того металла, который выделяется на катоде, В том случае, когда необходимы нерастворимые электроды, кроме химической устойчивости в Данной среде они должны обладать и другими свойствами, например, каталитической активностью, которая позволяет с высокой селективностью проводить основную электрохимическую реакцию достаточной механической прочностью. Материал, из которого изготовляется электрод, должен быть дешев и доступен. Немаловажное значение имеет стабильность состояния поверхности электрода во времени. [c.10]

    Э.т. относят к суперионным проводникам и часто наз. супериониками. Однако суперионик - более общее понятие, относящееся к высокопроводящим соед. как с ионной проводимостью (Э.т.), так и со смешанной ионно-электронной проводимостью. В электрохим. системах в отличие от Э. т. суперионики со смешанной проводимостью выполняют роль электродов. [c.435]

    В пользу представлений об основной роли Сг +-ионов как активных центров дегидрирования свидетельствуют также данные недавно опубликованных работ Дельмона и др. [30, 31]. Исследовалась активность и селективность ряда твердых растворов СгаОз—AI2O3 различного состава и разной кристаллической структуры в реакции дегидрирования изобутана в изобутилен. Авторы приходят к заключению, что нормальными активными центрами дегидрирования служат Сг +-ионы, возможно, с неполной координацией. Сг +-ионы считаются ответственными за начальную высокую активность и быструю дезактивацию алюмо-хромового катализатора, что согласуется с данными Рубинштейна и Словецкой [21] о соответствии количества хемосорбированного на поверхности катализатора углеводорода количеству ионов Сг +. Действительно, адсорбция парафина на Сг +-ионах происходит с участием одного электрона из катализатора, что обусловливает сильную хемосорбцию и, следовательно, большое время жизни поверхностных комплексов. Последние успевают, таким образом, реагировать с адсорбированными или свободными молекулами парафина, образуя полимерные цепи, прикрепленные к поверхности катализатора [32] это объясняет быструю частичную дезактивацию катализатора в начале реакции. При адсорбции на Сг +-ионах электроны проводника участия не принимают и поэтому осуществляется только слабая хемосорбция. Таким образом, ответственными за процесс дегидрирования должны быть медленно дезактивирующиеся Сг +-ионы (или пары ионов Сг—Сг, Сг—А1, Сг—О, в состав которых входит Сг +-ион). [c.151]

    Изложенная выше теория является результатом применения общей теории Вагнера [1, 2] к процессу окисления меди до СЫзО. Иной вывод уравнений Вагнера был дан Хором и Прайсом [3], а также Постом [4]. Можно предположить, что рост слоя окисла на любом металле при достаточной толщине этого слоя будет происходить по параболическому закону. Если при стехиометрическом составе окисел является изолятором, подобно СНзО, а при избытке одного из компонентов приобретает катионную и электронную проводимость, то константа параболической скорости выражается формулой, сходной с уравнением (37). Если же это условие не выполняется, то формула для константы параболической скорости изменяется. Рассмотрим в качестве примера окисел МСзО, который наряду с катионными вакансиями, образовавшимися при поглощении кислорода, содержит катионные вакансии и катионы в междуузлиях, полученные термическим путем. При стехиометрическом составе этот окисел является ионным проводником. Если электронная проводимость, обусловленная избытком [c.455]

    Если в газе имеются свободные заряды в виде ионов, электронов нли тяжелых зар5шенных частиц, то он является проводником электричества. Положительные ионы представляют собой атомы, молекулы или группы молекул, потерявшие один и)ш более электронов в соответствии с этим они могут быть одно- или многозарядными. Отрицательные ионы — подобные же частицы, присоединившие к себе обычно один электрон, например Н , О", 1 , ОН и т. д. В большинстве случаев положительные ионы имеют один заряд, например Н" , Не , Н , О , СО и т. п. примером дважды заряженного атомного иона является а-частица, именно Не + +. Благородные газы могут образовывать молекулярные ионы, например Не , N6 и др. Ионизация в газах, как п электризация металлических поверхностей или поверхностей диэлектриков, может быть вызвана облучением ультрафиолетовым светом или рентгеновскими лучами, бомбардировкой вещества а-частицами и многими другими способами, которые будут рассмотрены в главе 3. [c.13]

    Общая характеристика газовых электродов. Любой газовый электрод представляет собой полуэлемент, состоящий из металлического проводника, контактирующего одновременно с соответствующим газом и с раствором, содержащим ионы этого газа. Конструирование газового электрода и измерение потенциала системы газ — раствор ионов газа невозможно без участия металлического проводника, так же как любой электрод немыслим без проводника с электронной проводимостью. Кроме того, металл в газовых электродах не только создает электронно-проводящий электрический контакт между газом и раствором его ионов, но и ускоряет медленно устаяавливающееея электродное равновесие, т. служит катализатором электродной реакции. Следовательно, в газовых электродах можно использовать не любые металлы, а лишь те, которые обладают высокой каталитической активностью по отношению к реакции газ —ионы газа в растворе. Далее, потенциал металла в газовом электроде не должен зависеть от активности других ионов, присутствующих в растворе, в частности, от активности собственных металлических ионов. Являясь катализатором реакции между газом и его ионами в растворе, металл газового электрода в то же время должен быть инертным по отношению к другим возможным реакциям. Наконец, металл в газовом электроде должен обеспечивать создание по возможности большей поверхности раздела, на которой могла бы протекать обратимая реакция перехода газа в ионное состояние. Всем этим требованиям лучше всего удовлетворяет платина, которая чаще всего и используется при конструировании газовых электродов. Для создания развитой поверхности платину покрывают электролитически платиновой чернью, получая так называемую платинированную платину Pt, Pt. Газовые электроды очень чувствительны к изменению состояния поверхности платины, в частности, к отравлению ее каталитическими ядами. Получение воспроизводимых значений потенциала, отвечающих истинно равновесным условиям функционирования газовых электродов, связано поэтому с необходимостью соблюдения различных, не всегда легко осуществимых мер предосторожности. [c.155]

    Известно, что существуют два различных механизма прохождения электрического тока через проводники. Зарядами, движущимися в электрическом поле и создающими эффект тока, могут быть электроны или ионы. Электронная проводимость присуща металлам и некоторым другим телам. Ионная проводимость присуща многим химическим соединениям, обладающим ионным строением, например солям в твердом и рас-плавленнод состоянии, а также многим водным и неводным растворам. [c.25]


Смотреть страницы где упоминается термин Проводники ионные и электронные: [c.165]    [c.384]    [c.255]    [c.208]    [c.189]    [c.123]    [c.132]    [c.480]    [c.486]    [c.483]    [c.247]   
Краткий курс физической химии Изд5 (1978) -- [ c.375 ]




ПОИСК





Смотрите так же термины и статьи:

Проводники

Ячейка, в которой один из электродов является проводником, обладающим проводимостью за счет посторонних ионов, а в качестве другого используется инертный проводник с электронной проводимостью

Ячейки с двумя необратимыми электродами. Один электрод является электронным, а другой — ионным проводником



© 2024 chem21.info Реклама на сайте