Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Импульсный циклотронный резонанс

    Реакцию между ионом аммония ЫН и триметиламином (СНз)зМ, аналогичную реакции (4.16), изучали методом импульсной масс-спектрометрии ионного циклотронного резонанса [115]. Представленная на рис. 4.2 диаграмма изменения энергии Гиббса объясняет, что происходит с реагентами при переходе от газовой фазы к водному раствору. В газовой фазе продукты реакции устойчивее исходных веществ на 92 кДж- МОЛЬ . В водном растворе вследствие преимущественной сольватации иона NH4 (за счет образования водородных связей) в ходе реакции энергия Гиббса уменьшается всего на 3 кДж- МОЛЬ , поэтому в состоянии равновесия в водном растворе концентрация ионов аммония в 10 раз выше, чем в газовой фазе. [c.139]


    Разработанные в течение последних двадцати лет три новых экспериментальных метода позволили изучать в газовой фазе и ионные реакции. К ним относятся импульсная масс-спектро-метрия с ионным циклотронным резонансом (ИЦР), импульсная масс-спектрометрия высокого давления и изучение послесвечения [469—478] (см. также литературу, приведенную в разд. 4.2.2). Хотя в основе этих методов лежат различные независимые физические принципы, полученные с их помощью результаты изучения кислотно-основных и других ионных реакций хорошо согласуются между собой (погрешность не превышает 0,4—1,3 кДж-моль или 0,1—0,3 ккал-моль ) и считаются не менее достоверными, чем результаты изучения реакций в растворах. [c.183]

    Следует заметить, что принципы фурье-спектроскопии не ограничены ядерным магнитным резонансом. Те же принципы применимы и в других областях спектроскопии, включая ЭПР и вращательную микроволновую спектроскопию [1.56], ядерный квадру-польный резонанс [1.57], импульсную оптическую спектроскопию и ион-циклотронный резонанс [1.58]. [c.25]

    В связи с установлением большого значения растворителя при ионизации фенолов методом импульсной спектроскопии ионного циклотронного резонанса было изучено влияние заместителей на константу равновесия следующего процесса в газовой фазе [44, 1973, т. 95, с. 8462]  [c.106]

    Среди импульсных методов особо выделяется методика с использованием ионного циклотронного резонанса 1481. Она позволяет проводить измерения сечений в широком диапазоне кинетических энергий первичных ионов (начиная от энергий, соответствующих температуре реакционной камеры с четкой идентификацией как первичного, так и вторичного иона для данного процесса). Метод начал широко использоваться при количественных измерениях кинетических параметров ионных процессов 1491. В таблицах этот метод обозначен номером 7. [c.11]

    Масс-анализатор ИЦР, называемый также масс-спектрометр с преобразованием Фурье (МС-ПФ), в последнее время находит все большее применение для аналитических целей [16, 22, 60]. Основным элементом спектрометра ИЦР (с наличием или без Ф)фье-приставки) является прямоугольная шестиэлектродная ячейка со стороной, равной нескольким сантиметрам, внутри которой создается высокий вакуум и сильное магнитное поле (рис. 7.14). В ней производится ионизация исследуемых молекул импульсным пучком электронов (в течение 1-5 мс) или другим методом. Образовавшиеся ионы движутся в магнитном поле по циклическим траекториям с так называемой циклотронной частотой со , определяемой указанным соотношением (7.13). Ионы удерживаются в ячейке с помощью потенциальной ямы, образованной наложением положительного напряжения 1,0 В) на боковые пластины и отрицательного напряжения (== -0,5 В) на верхнюю, нижнюю и две торцевые пластины. Разделение по массам достигается в результате подачи переменного радиочастотного поля с частотой оз на верхнюю и нижнюю пластины. Если частота электрического поля совпадает с циклотронной частотой (со/ = сом), то ионы будут поглощать энергию и их скорость и радиус траектории увеличатся. Все ионы с отношением М е будут циркулировать в фазе с радиочастотным возбуждением. Энергию, поглощаемую ионами в резонансе, измеряют с помощью специальной схемы. Однако схема работает только при частоте выше 75 кГц, что ограничивает анализ ионов с большими массовыми числами. [c.858]


    В усовершенствованном методе (с приставкой Фурье) проводится быстрое сканирование в пределах всего интересующего диапазона частот (20 кГц до 10 МГц при В = 1-2 Тл) за 1 мс. Это заставляет все ионы в заданном диапазоне массовых чисел циркулировать в фазе, т.е. поглощать энергию, когда их циклотронная частота совпадает с радиочастотой. Как результат такого поглощения энергии при резонансах на верхней и нижней пластинах ячейки индуцируется импульсный ток, который можно регистрировать, предварительно усилив его электронным усилителем. Величины сигналов обусловлены количеством ионов данной конкретной массы, находящихся в ячейке, циклотронная частота которых совпадает с радиочастотным электрическим полем. Полученные в результате сигналы в измеряемом промежутке представляют собой совокупность импульсов от ионов всех анализируемых масс и, следовательно, содержат всю информацию об образце, которую дает МС рассматриваемого типа. С помощью специального преобразования можно перейти от полученной временной зависимости величин импульсов за определенный отрезок времени к зависимости их ох частоты, которая непосредственно связана с массами ионов. В результате такого преобразования получается традиционный масс-спектр анализируемых ионов. Сама процедура перехода к масс-спектрам называется преобразованием Фурье. В МС-ПФ достигнуто рекордное для масс-спектрометрии разрешение 250000-280000 и более [22], Как следз ет из соотношения (7.13), в МС-ПФ не надо калиброваться по массам с помощью стандартов, т.к. этот метод дает точное значение масс анализируемых ионов. [c.858]

    Элементарные реакции. Для установления М. р. привлекают как теоретич. методы (см. Квантовая химия, Динамика элементарного акта), так и мiioгoчи лeнныe эксперим. методы. Для газофазньк р-ций >io молекулярных пучков метод, масс-спектрометрия высокого давления, масс-спектрометрия с хим. ионизацией, ионная фотодиссоциация, ион-циклотронный резонанс, метод послесвечения в потоке, лазерная спектроскопия-селективное возбуждение отдельных связей или атомных групп молекулы, в т.ч. лазерно-индуцированная флуоресценция, внутрирезонаторная лазерная спектроскопия, активная спектроскопия когерентного рассеяния. Для изучения М. р. в конденсир. средах используют методы ЭПР, ЯМР, ядерный квадрупольный резонанс, хим. поляризацию ядер, гамма-резонансную спектроскопию, рентгено- и фотоэлектронную спектроскопию, р-ции с изотопными индикаторами (мечеными атомами) и оптически активными соед., проведение р-ций при низких т-рах и высоких давлениях, спектроскопию (УФ-, ИК и комбинационного рассеяния), хемилюминесцентные методы, полярографию, кинетич. методы исследования быстрых и сверхбыстрых р-ций (импульсный фотолиз, методы непрерывной и остановленной струи, температурного скачка, скачка давления и др.). Пользуясь этими методами, зная природу и строение исходных и конечных частиц, можио с определенной степенью достоверности установить структуру переходного состояния (см. Активированного комплекса теория), выяснить, как деформируется исходная молекула или как сближаются исходные частицы, если их несколько (изменение межатомных расстояний, углов между связями), как меняется поляризуемость хим. связей, образуются ли ионные, свободнорадикальные, триплетные или др. активные формы, изменяются ли в ходе р-ции электронные состояния молекул, атомов, ионов. [c.75]

    В настоящее время определены кислотности и основность многих органических соединений в газовой фазе, чему способствовало освоение в течение последних 20 лет трех новых экспериментальных методов. К их числу относятся импульсная масс-спектрометрия высокого давления (0,1—1300 Па) (МСВД) [22, 23, 118J, послесвечение в быстром потоке газа, например гелия, при давлении около 10 —10 Па [119] и спектрометрия ионного циклотронного резонанса (ИЦР) с импульсным [c.133]

    Метолом импульсно спектроскопии ионного циклотронного резонанса было нзуче и влияние заместителей на константу рав-новесия следующего процесса в газовой фазе [44, 1973, т. 95, с. 84621  [c.110]

    Методы определения кинетических констант в этой и всех других таблицах имеют следующие обозначения - метод внутренней ионизации электронным ударом при низком давлении газа - то же при повыиюнном Давлении 2 - метод внутренней ионизации Фотонным ударом 3. метод внешней ионизации с использованием двойных масс-спектрометров - метод внешней ионизации с разделением по массе только первичных ионов -метод внешней ионизации с разделением по массе только пучка вторичных ионов 2 - импульсный метод с внутренней ионизацией 6 - метод дрейфовой трубки Т - метод ионного циклотронного резонанса - метод, основанный на изучении ионного состава плазмы 9 - метод, основанный на изучении ионного состава пламени - метод, основанный на радиацион-но-химических исследованиях 1Л - метод, основанный на фотохимических исследованиях - метод сталкивающихся пучков - метод, основанный на изучении распада плазмы в потоке газа - метод совпадений, при котором производится одновременная регистрация частиц продуктов данного элементарного акта - расчетный метод. [c.15]


    Более высокие значения КПД получены в системах умеренного давления. Так, в импульсном СВЧ-разрпде с магнитным полем в условиях электронного циклотронного резонанса при давлении 4—13 кПа наблюдали эффективность около 60%. Близкие значения КПД были достигнуты в аналогичных условиях в неравновесном ВЧ-разряде. Наиболее высокая энергетическая эффективность разложения СО (80%) была получена в неравновесном стационарном СВЧ-разряде умеренного давления (7 — 27 кПа), где энергозатраты составили примерно 3,7 эВ/мол. (краткое описание этих экспериментов приведено ниже).  [c.52]

    Наиболее высокая энергетическая эффективность синтеза окислов азота (30%. энергозатраты 3 эВ/мол.) достигнута в неравновесном СВЧ-разряде с магнитным полем, работающем в условиях электронного и циклотронного резонанса (ЭЦР). Установка (рис. 2.28) работала как в импульсном режиме (источником излучения был магнетрон), так и в стационарном (тогда источником был клистрон) в диапазоне давлений 10 — 10 Па ([N3] [О2] =1 1) Мощность магнетронного генератора (X = 8 мм) 30 кВт, длительность импульса 0,3 мкс, частота повторения импульсов — до 10 Гц мощность клистрона (X — 8 мм) 30 Вт. Подвод мощности от СВЧ-генератора к реактору осуществлялся стандартным волноводом прямоугопь-ного сечения (7,2 х 3,4 мм). Для ликвидации возможного перегрева системы стенки реактора охлаждали жидким азотом. Разрядные параметры на установку Пд = = 10 2-МО см Го =600- -1300 К, Ге = 1-Ь2эВ. [c.81]


Реакционная способность и пути реакций (1977) -- [ c.373 ]




ПОИСК





Смотрите так же термины и статьи:

Ион-циклотронный резонанс

Циклотрон



© 2024 chem21.info Реклама на сайте