Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо, полимерные производные

    Известно, что контакт человека с феноло-, мочевино-, меламино-формальдегидными, эпоксидными, полиэфирными смолами, полиамидами, поливинилхлоридом, каучуками и клеями различного состава м. б. причиной аллергич. дерматитов. Аллергенными свойствами обладают выделяюпщеся из полимерных материалов акрилонитрил, ароматич. амины (напр., неозон Д), бензол, толуол, ксилолы, гексаметилендиамин, ацетон, резорцин, каптакс, фталаты, кумарон, малеиновый ангидрид, пиридин. Ряд ингредиентов полимерных материалов, напр, фталевый ангидрид, гидроперекиси, стирол, влияет на функции половых желез (гонадотропное действие). Известны тератогенные и эмбриотоксич. свойства бензола, фенола и его производных, формальдегида. К числу химич. мутагенов относят этилен- и пропиленоксид, диметилформамид, фенол, формальдегид, эпихлоргидрин, этиленгликоль, гидроперекись изопропилбензола. Из химич. веществ, входящих в состав полимерных материалов, канцерогенными свойствами обладают, напр., полициклич. углеводороды (3,4-бензпирен), перекиси. Ниже приводится С.-г. х. полимеров, наиболее широко применяемых в народном хозяйстве. [c.183]


    Тот факт, что поликонденсацией получено огромное число полимеров различных классов, различающихся по структуре и свойствам, несомненно, указывает на широчайшие синтетические возможности этого метода синтеза полимеров. Конечно, в одной монографии из-за ограниченности объема нет возможности остановиться на всем новом, что имеется в области поликонденсации, на всех синтезированных конденсационными реакциями полимерных структурах. Отметим лишь, что они многочисленны и включают в себя не только полимеры с органическими цепями макромолекул, но и элементоорганическими и целиком неорганическими. Так, например, широчайшие возможности поликонденсация открыла для получения координационных полимеров разных типов как с элементоорганическими, так и неорганическими основными цепями макромолекул, синтезируемых на основе органических и неорганических лигандов и разнообразных металлических производных [1-3]. Широко представлены поликонденсационные процессы и в реакциях образования кремнийорганических полимеров [4—7] - полимеров с неорганическими основными цепями молекул, которые подчас включают в свой состав наряду с кремнием и многие другие элементы (алюминий, железо, титан, цинк, никель, кобальт и др.). [c.365]

    Гель-хроматография, как представляется на первый взгляд, должна быть идеальным методом отделения полимеров и определения их характеристик. Однако большинство известных сорбентов, применяемых в гель-хроматографии, для решения зтой задачи не подходят. На поверхности гелей сефадекса имеются вицинальные гидроксильные группы, которые в нейтральной среде легко образуют комплексы с ионами большинства металлов (типичным соединением этого типа является глицерат железа Британской фармакопеи). Поэтому при применении в больших концентрациях эти ионы дают хвосты , а при малых концентрациях полностью адсорбируются. На поверхности пористых стекол и пористого силикагеля (и их производных) обычно располагается значительное число силанольных групп, которые также энергично взаимодействуют с мономерными и полимерными ионами металлов. Тем не менее методом гель-хроматографии удается разделить гидролизуемые полимерные соединения некоторых металлов, например рутения [12], родия (III) i[13], и растворимые ферроцианиды [14—16]. Характер перемещения небольших мономерных ио ов внутри сорбента, применяемого для гель-хроматографии, в значительной степени определяется ионным обменом с остаточными карбоксильными группами (благодаря которым происходит вытеснение ионов) и гидрофобной адсорбцией, особенно сильной на сефадексе LH-20, при использовании которого, кроме того, может наблюдаться эффект высаливания [17]. [c.328]


    Механизм защитного действия ацетиленовых соединений в соляной кислоте обсуждался также в работе Подобаева с сотр. [91]. Анализируя результаты, полученные при исследовании большого числа ацетиленовых производных, авторы пришли к заключению, что эти соединения действуют по адсорбционно-полимеризационно-му механизму адсорбция ацетиленовых соединений на железе происходит главным образом по тройной связи при этом на поверхности железа возникают полимерные пленки ацетиленовых соединений. Полярные группы в ацетиленовых соединениях влияют на я-связи ацетиленовой группы. Те из них, которые ослабляют я-связи, увеличивают вероятность адсорбции и полимеризации, поскольку химическая адсорбция ацетиленовых соединений возникает при разрыве одной из я-связей ацетиленовой группы. По степени ослабления тройной связи в ацетиленовых соединениях полярные группы располагаются в следующий ряд  [c.154]

    Рассмотрен химизм взаимодействия производных трихлорметилфосфиновой кислоты с железом. Это взаимодействие включает хемосорбцию прйсадки на металле, разложение присадки и образование сложного хлор-фосфорорганического полимерного продукта, содержащего железо. [c.235]

    Из-за непостоянства атмосферных условий для получения достаточно надежных результа-товГ испытания на А. должны продолжаться не менее 4—5 лет. А. определяется, с одной стороны, климатом данной местности и условиями экспозиции (время года, дня, наличие прямой и рассеянной солнечной радиации, концентрация озона), а с другой — составом полимерного материала. В связи с этим при оценке А. обычно указывают, в какой климатич. зоне проводились испытания (влажные или сухие субтропики и тропики, средняя полоса, районы Крайнего Севера). Наряду с природой самого полимера на А. существенно влияют различные примеси и ингредиенты. Нек-рые из таких веществ (напр., катализаторы полимеризации, отбеливающие вещества, соли железа, двуокись титана, применяемая для матирования волокон) могут существенно ухудшать А., сенсибилизируя фотоокислительные процессы. Для увеличения А. используют стабилизаторы (напр., производные бензофенона, бензтриазола, углеродные сажи и др.) или отражатели света (напр., алюминиевый порошок). [c.107]

    В роли комплексообразователей часто выступают производные семивалентпых иода и марганца, шестивалентпых серы, селена н теллура, пятивалентных фосфора и мышьяка, четырехвалентных кремния, титана, циркония, церия, тория и олова, трехвалентных бора, алюминия, железа, хрома, марганца, кобальта и родия, двухвалентных никеля, марганца и бериллия (а возможно и меди). Кроме того, могут существовать также гетерополианионы, согласно воззрениям Копо производящиеся от полимерной формы воды. [c.531]

    Для хрома, молибдена и вольфрама необходимо отметить существование очень интересных летучих гексакарбонилов Сг(СО)в, Мо(СО)е,. W( O)e. Эти соединения являются типичными представителями весьма важного, но пока еще недостаточно изученного класса соединений. Кроме указанных трех соединений, к этому классу относятся также тетракарбонил никеля Ni( 0)4, пентакарбонилы железа рутения II осмия, а также полимерные карбонилы типа [Со(СО)4]2, [Rh( O)4l2, [1г(СО)4]з, Ре2(С0)э и др. Известны также различные производные карбонилов, например, Fe( O)4X2 (где X — галоген), H2[Fe( 0)4l, нитрозилкарбонилы и т. п. [c.591]

    Стукан и др. 147] исследовали комплексы железа с триазольными производными. Мессбауэровские параметры этих соединений приведены в табл. 4.13. Комплексы железа(П) общей формулы Ре(Т2)2-НаО и Ре (Т2)2-2Н20 имеют полимерную структуру, аналогичную структуре тетразольных комплексов железа. Комплексы железа(1П) содержат только одну молекулу триазола в молекуле комплекса и обладают мономерной структурой. [c.242]

    Кремниевые производные карбонила кобальта типа Кз31Со(Со)4 (R — алкил [639], арил, Fg, водород, фтор) [640] получены реакцией Со2(СО)д с кремнийорганическими гидридами в условиях, аналогичных образованию соответствующих производных карбонила железа [514, 588, 641—644]. Это — кристаллические, большей частью окрашенные соединения с четкими температурами плавления. Связь кремний — кобальт в достаточной степени прочна. Так, окись углерода не внедряется в связь Si—Со даже при высоком давлении окиси углерода [520]. Третичные амины также не разрушают связи металл—металл в этом случае образуются продукты присоединения — значительно более прочные, чем у марганцевых аналогов. Аммиак, однако, расщепляет связь Si—Со в этих комплексах в результате металлическое производное разлагается с образованием, в конечном счете, силанов, три-силиламина и полимерных продуктов [512, 521]. Изучались также реакции расщепления связи кремний—кобальт и у некоторых других производных этого типа [645]. [c.49]

    Последние два соединения легко образуют производные с сульфатом железа (И), в которых две полимерные единицы приходятся на один атом железа. Поэтому возможно, что железо здесь имеет координационное число шесть. Полимеры, содержащие железо, обладают необычными магнитными свойствами, они ферромагнитны. Вероятно, причину этого надо искать в спаривании атомов железа. Производные железа нерастворимы и не плавятся ниже 300°. Из-за нейтральной природы основания Шиффа полимер с координационным железом представляет собою катион. Кроме того, имеются отдельные анионы, обусловливающие электроиейтральность всей системы. Такая ионная природа, без сомнения, оказывает влияние на свойства полимеров. В случае хлорида кобальта (II) с одним атомом кобальта связана только одна полимерная единица, поэтому предполагают наличие хлоридных мостиков между Двумя цепями, чтобы обеспечить кобальту его координационное число. Хотя полимерное основание Шиффа, полученное из бензидина, обладает малым сродством к железу (И), оно легко соединяется с хлоридом меди (II). Это объясняется различной стереохимией (октаэдрической и планарной) данных элементов. Более легкое взаимодействие железа (И) с полимерами на основе этилендиамина и гексаметилендиамина объясняется, вероятно, также пространственными отношениями. По мнению авторов, в полимерах на основе этилендиамина и гексаметилендиамина две последовательные тридентат-ные единицы могут выступать в качестве шестидентатного хелатного образования. [c.402]



Смотреть страницы где упоминается термин Железо, полимерные производные: [c.363]    [c.126]    [c.183]    [c.110]    [c.23]    [c.257]    [c.62]    [c.237]    [c.87]    [c.44]    [c.80]    [c.482]    [c.391]    [c.401]   
Прогресс полимерной химии (1965) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте