Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость реакции природы ионов

    В большинстве случаев при совместном осаждении металлов скорости электрохимических реакций существенно отличаются от скоростей раздельного восстановления ионов. В реальных условиях электроосаждения сплавов необходимо учитывать, кроме указанных выше факторов, влияние изменения природы, состояния и величины поверхности электрода, на которой протекает реакция, строения двойного электрического слоя, состояния ионов в растворе, влияние энергии взаимодействия компонентов при образовании сплава и др. В зависимости от характера и степени влияния этих факторов, скорости восстановления ионов при совместном выделении металлов на катоде могут отклоняться в ту и другую стороны от скоростей раздельного их осаждения. [c.433]


    Помимо концентрации, температуры, наличия катализатора существуют другие факторы, влияющие на скорость реакции природа растворителя, ионная сила и т. д. [c.89]

    Изменение природы и концентрации присутствующих в растворе ионов оказывает на скорость реакции между ионами такое же влияние, как и на равновесие реакции между ионами, имеющими заряды, равные зарядам реагентов. Это отражено в уравнении солевого эффекта, предложенном Бренстедом в 1922 г. [4] (разд. 4.3). Разумно предположить, как это сделал Бренстед, что закономерности равновесия между ионами являются просто легко [c.130]

    Работа публиковалась в ряде статей и хотя природа полученного продукта реакции указывает на то, что процесс скорее имеет ионный, чем радикальный характер, детали его все еще довольно неясны. Как подчеркивают авторы, открывшие этот процесс [112], специфичность катализатора и гетерогенный характер реакции указывают на то, что происходит какой-то процесс с ионными парами, в котором большое значение Для определения скорости и направления полимеризации играет природа иона, связанного с активным центром. [c.161]

    Влияние диффузионных процессов на скорость реакции зависит от природы и количества фаз, находящихся в реакционной системе, от величины скорости данной реакции и от типа процесса (непрерывный или периодический). Когда скорость реакции очень велика (например, ионная реакция нейтрализации кислоты основанием, процессы разложения взрывного характера, горение), диффузионные процессы слабо влияют на общую скорость реакции. [c.23]

    Таким образом, в этом случае ион гидроксила одновременно является и одним из исходных веществ, и катализатором. В табл. XII, 4 приведены константы скорости реакций омыления этилацетата в растворах гидроокисей некоторых металлов. Из таблицы видно, что константа скорости практически не зависит от начальной концентрации эфира и от химической природы >щелочи. [c.286]

    Общие кинетические закономерности протекания элементарных реакций не зависят от того, какие именно частицы — молекулы, свободные радикалы, ионы или комплексы — принимают участие Б элементарном акте химического превращения. Природа частиц определяет лишь величину константы скорости реакции или, точнее, величины предэкспоненциального множителя н энергии активации реакции. Здесь и далее рассматривается зависимость этих величин от природы реагирующих частиц и от среды, в которой протекает реакция, [c.101]


    Рассуждая с термодинамических позиций, можно сказать, что энергия переходного состояния комплекса металл — аминокислота благодаря стабилизации зарядов значительно понижена по сравнению с энергией переходного состояния при гидролизе свободной аминокислоты. Кроме того, на стадии катализа металлом составляющая связанная с перегруппировкой растворителя, по-видимому, небольшая величина. Следовательно, важна именно матричная роль иона металла при связывании с субстратом. Ионы металла ускоряют также гидролиз ряда амидов, но каталитический эффект не столь велик, как для соответствующим образом связанных эфиров. Причина этого — различия в природе уходящей группы. Худшая уходящая группа, амидная, нарушает контроль скорости реакции тетраэдрическим промежуточным соединением. [c.353]

    По данным [ 46 ], при растворении активного никелевого электрода в 0,01-1 н. растворах хлорной кислоты, содержащих перхлорат натрия в концентрациях от 3 до 7 М, зависимость скорости растворения металла от потенциала характеризуется двумя тафелевскими участками с наклонами 120 мв при низких и 40 мв при повыщенных плотностях тока. Одновременно установлен первый порядок реакции по ионам гидроксила. Такие результаты явились основанием для вывода о различной природе лимитирующей стадии в зависимости от величины поляризации (отщепление первого электрона при низких и второго при высоких плотностях тока) [ 46]. Обнаружено снижение скорости анодного растворения никеля в свежем сернокислом растворе в результате его длительного предварительного выдерживания в растворе серной кислоты, что объясняется адсорбционным вытеснением сульфат-ионами ионов он [35].  [c.10]

    Характерным примером, показывающим роль энергии адсорбции продукта реакции в зависимости скорости электродного процесса от природы металла, является реакция разряда ионов водорода  [c.273]

    Скорость реакции выделения водорода сильно зависит от природы металла. В табл. 14 приведены токи обмена для разряда ионов H,,0 на разных металлах. Можно показать, что резкое изменение iq при переходе от Hg к Pt обусловлено возрастанием энергии адсорбции атомарного водорода. [c.202]

    Так, упомянутые процессы, ведущие к снижению эффективного заряда реагирующих частиц и тем самым уменьшающие отталкивательное взаимодействие между ними, повышают константы скорости реакции димеризации. Скорость димеризации нейтральных свободных радикалов в кислых растворах на несколько порядков выше скорости димеризации непротонированных частиц — анион-радикалов — в средах с пониженной протоно-донорной активностью. Образование ионных пар также приводит к росту константы скорости димеризации анион-радикалов (табл. 7.1) и зависимости ее эффективного значения от природы катионов фона и их радиуса (рис. 7.19). [c.252]

    Поэтому вопросы перенапряжения рассматриваются в главе, посвященной кинетике. Для выяснения механизма перенапряжения следует рассмотреть стадии, из которых состоит процесс превращения ионов водорода в молекулу при электролизе кислых растворов. Опыт показывает, что перенапряжение зависит от природы металла, из которого состоит электрод. Например, оно очень мало на платине. Поэтому скорость разряда не может определяться скоростью диффузии ионов в растворе. Следовательно, наиболее медленными стадиями, требующими рассмотрения, являются два процесса. Первый — это реакция разряда иона гидроксония НзО и переход атомов водорода в адсорбированное состояние на поверхности электрода  [c.398]

    В г е те р о л и т и ч е с к и X реакциях не Происходит разрушения и возникновения электронных пар, а взаимодействие происходит за счет электронов, которые уже были спаренными до реакции. Такие реакции почти ие наблюдаются в газах, но являются характерными для растворов — большие диэлектрические постоянные многих растворителей понижают электростатическое притяжение ионов, а электрические поля полярных молекул растворителя способствуют поляризации диссоциирующей связи. Таким образом, гетерополярные реакции протекают с существенным перераспределением зарядов между реагирующими частицами и образование активированного комплекса при этом сопровождается значительной перестройкой сольватных оболочек. Поэтому скорость гетеро-литических реакций, в противоположность гомолитическим, существенно зависит от природы растворителя, и известно множество реакций, которые вообще не идут без растворителя. Скорость реакции [c.341]

    Скорость реакции зависит от природы среды. Последняя может быть выражена через ионную силу, если между ионами существует взаимодействие. Уравнение метода активированного комплекса для реакции в растворах запишется [c.300]


    По-видимому, самыми полезными кинетическими данными являются сами константы скорости, поскольку по ним можно судить о влиянии на скорость реакции таких факторов, как строение реагентов (см. гл. 9), природа растворителя, ионная сила, катализатор и др. [c.293]

    Сверху вниз в группах периодической системы нуклео-фильность возрастает, хотя основность падает. Так, обычный порядок нуклеофильности галогенидов выглядит следующим образом 1->Вг->С1 >р- (хотя, как будет показано ниже, этот порядок зависит от природы растворителя). Аналогично любой серосодержащий нуклеофил сильнее соответствующего кислородсодержащего аналога, и то же справедливо для соединений, содержащих фосфор и азот. Главная причина различий между основностью и нуклеофильностью заключается в следующем меньшие по размеру отрицательно заряженные нуклеофилы лучше сольватированы обычными полярными протонными растворителями, т. е. поскольку отрицательный заряд С1 по сравнению с I" более сконцентрирован, первый более плотно окружен оболочкой молекул растворителя, которая образует барьер между нуклеофилом и субстратом. Это особенно важно для полярных протонных растворителей, молекулы которых могут образовывать водородные связи с нуклеофилами небольшого размера. В качестве доказательств можно привести следующие факты многие реакции нуклеофильного замещения с участием небольших отрицательно заряженных нуклеофилов значительно быстрее происходят в полярных апротонных, чем в протонных растворителях [260], и в ДМФ — апротонном растворителе — порядок нуклеофильности галогенид-ионов имеет следующий вид С1->Вг->1- [261]. В другом эксперименте, проведенном в ацетоне, в качестве нуклеофилов были использованы ВщЫ+Х- и их (где Х- галогенид-ион). Ассоциация галогенид-иона в первой соли значительно ниже, чем в иХ. Относительные скорости реакций с участием ЫХ составили для С1- 1, для Вг- 5,7 и для 1 6,2 это нормальный порядок, тогда [c.76]

    Региоселективные реакции чрезвычайно распространены в органической химии. Остановимся поэтому подробнее на их определении. Прежде всего, при оценке региоселективности следует учитывать статистический фактор. Такой учет был показан выше на примере хлорирования пропана. Кроме того, сравниваемые реакционные центры должны иметь одинаковую химическую природу. Например, различная скорость реакции гидроксид-иона по двум электрофильным центрам метилхлорацетата характеризует его хемоселективность, а не региоселективность (подробнее об этих реакциях см. в гл.13 и 20). Реакции называются полностью (100%) регио-селективными, если изменениям подвергается только одно положение. Реакции называют частично (Х%) региоселективными, если изменение по одному положению преобладает над остальными положениями. Различие можно проводить и на полуколичественном уровне и различать высокую и низкую региоселективность. Ранее для 100%-ной региоселективности предлагался термин региоспецифичность . В настоящее время он не рекомендуется из-за противоречий с терминами стереоселективность и стереоспецифичность (эти термины рассматриваются в гл. 4 и 5). [c.151]

    Существует много других способов определения констант ассоциации ионов, например полярографический, спектрометрический и сиектрофотометрический методы. Однако потребовалось бы чрезмерно много места для описания этих методов, а это не обязательно для иллюстрации факта ассоциации ионов и зависимости ассоциации от природы растворителя, температуры и концентраций это не обязательно также, чтобы показать необходимость получения таких сведений для интерпретации данных по скоростям реакций между ионами в растворе. [c.297]

    Олсон и Симонсон [111] при обсуждении диаграммы Ливингстона и некоторых собственных данных по двум реакциям, идущим с участием иона бромпентаммиаката кобальта, пришли к выводу, что влияние добавок инертных солей на скорости реакций между ионами одного и того же знака определяется почти исключительно концентрацией и природой ионов добавленной соли, которые отличаются по знаку от реагирующих ионов , и скорость не зависит от ионной силы раствора . Влияние солей можно количественно объяснить на основе констант ассоциации ионов и частных констант скорости для ассоциированных и неассоциированных реагентов. Введение коэффициентов активности не предстлвляется необходимым . Работа Дэвиса [37] полностью опровергает оба утверждения, выделенные нами курсивом. Олсону и Симонсону явно не удалось показать, что влияние ионных пар дополняет, а не полностью заменяет влияние активностей ионов. [c.164]

    Большое значение для суждения о механизме имеют наблюдения, согласно которым на скорость разложения почти не влияют природа аниона и его концентрация в растворе. Например, Эйлер [12] указал, что скорости распада хлорида, бромида, нитрата и сульфата диазония одинаковы, а Прей [11] обнаружил, что добавки различных солей — хлоридов, сульфатов, нитратов, формиатов, оксалатов, боратов, бромидов и тиоцианатов — в количествах, которые соответствуют приблизительно 0,4 М. концентрации в растворе, не влияют на скорость. Таким образом, известны веские аргументы в пользу механизма 5лг1. Тем не менее следует сделать две оговорки. Во-первых, экспериментальные данные менее убедительны в тех случаях, когда основным продуктом является фенол. Во-вторых, что еще более важно, вызывает сомнение, правильно ли учитывались в этих экспериментах возможные солевые эффекты. Следует помнить, что реакция между противоположно заряженными ионами сильно замедляется при увеличении ионной силы раствора, тогда как скорость реакции между ионом и нейтральной молекулой сравнительно мало зависит от ионной силы. [c.36]

    В рамках упомянутого механизма реакции и традиционных взглядов на природу ионных пар, упомянутые отклонения не находят себе объяснения, В то же время показано [165], что электропроводность НС1 в метаноле и этаноле описывается уравнениями (III.11) и (III. 12). Это позволяет вычислить как степень диссоциации ионных пар, так и отношение концентраций ионных пар в проводящехМ и непроводящем состояниях для каждого конкретного раствора НС1 в метаноле или этаноле. Установлено [65], что этими результатами можно количественно интерпретировать упомянутые выще кинетические данные, предполагая разные скорости реакции для ионных пар в проводящем и непроводящем состояниях. Это служит независимым кинетическим подтверл дением существования указанных двух состояний ионных пар и соблюдения закона разбавления Оствальда (без введения коэффициентов активностей), в данном случае для неводной среды. [c.94]

    Хотя н приведенном выше уравнении реакция десульфирования представлена как простой гидроли,з, Беддлей с сотрудниками [6] на основании изучения кинетики этой реакции пришел к выводу, что се нельзя так рассматривать, поскольку анион (скорее, чем сульфокислота) является реагирующей частицей. В результате изучения реакции десульфирования, проведенной в 90%-ной уксусной кислоте в присутствии минеральной кислоты в качестве катализаторов (НВг, Н2304), они пришли к выводу, что скорость реакции не зависит от концентрации сульфокислоты, от природы неорганического аниона, подчиняется уравнению первого порядка и пропорциональна активности иона водорода раствора. Они показали обратимую зависимость между сульфированием и десульфированием [c.522]

    В случае комплексных ионов кинетические параметры реакций могут существенно изменяться в зависимости от природы лигандов. Так, замена Р на Вг в комплексе [Сг (ННз)5 приводит к увеличению на три порядка константы скорости реакции этого комплекса с ионом Сг . Замена фенантролина (о-рНеп) на другой хелатный лиганд — этилендиамин (еп) на пять порядков снижает константу скорости электронного обмена между [Со (Ь1 )я]з+ и [Со Это свидетельствует в пользу образования лигандом в активированном комплексе мости-ковой связи между центральными ионами, повышающей вероятность переноса электрона. [c.103]

    Диэлектрическая проницаемость влияет на скорость реакции между одноименными и разноименными ионами (см. гл. XX). В воде расстояние захвата между разноименными ионами близко к ац. Кинетические параметры реакций, которые удалось провести и в газах, и в различных растворителях, оказались близкими. Такие реакции получили название нормальных. Однако давно выделен класс медленно идущих реакций (реакции Меншуткина) между га-логеналкилами и триалкиламинами, например СаНз + + (С2Н5)зМ —>- (С2Н5)4М1. Скорость этой реакции сильно зависит от природы растворителя, например, при переходе от гексана к нитробензолу она растет в 1,3-10 раза. [c.227]

    Как видно из уравнения (4.50), характеристика реакционной способности нуклеофила, действующего в фермент-субстратном комплексе, зависит от природы сорбированного субстрата. В табл. 29 приведено значение/гц,Ез для.реакции ацилирования химотрипсина одним из наиболее специфических субстратов, производным фенилаланина. Интересно сравнить это значение с реакционной способностью алкоксильных ионов, поскольку головная группа ферментного нуклеофила — это алифатический гидроксил остатка 5ег-195, протон которого взаимодействует с имидазольной группой Н1з-57. Значение константы скорости реакции метилового эфира М-ацетил-1-фенилаланина с алкоксиль-ным ионом М-ацетилсеринамида [c.163]

    На течение и ход гомогенных химических реакций большое влияние оказывает среда (опыт 36). При этом природа растворителя может значительно влиять на скорость реакций растворенных веществ, поскольку растворитель зачастую не только сам принимает активное участие в реакции, но и в ряде случаев оказывает каталитическое действие на протекающий химический процесс. Не меньщее влияние на скорость реакций в водных средах может оказывать наличие в воде ионов водорода и гидроксила (кислотность и щелочность среды). [c.85]

    Для установления механизма действия ПАОВ на электрохимические реакции и соответствия между экспериментом и существующими модельными рредставлениями нужно иметь количественные данные по адсорбции ПАОВ и по изменению скорости реакции в его присутствии. Необходимым условием получения таких данных является проведение кинетических и адсорбционных измерений в растворах одного и того же состава, поскольку природа и концентрация электролита фона могут существенным образом влиять на адсорбционные параметры ПАОВ. Кроме того, сопоставление скоростей реакций в присутствии и в отсутствие ПАОВ можно делать лишь при неизменной лимитирующей стадии электрохимической реакции. Хотя в настоящее время проведены многочисленные исследования влияния разнообразных органических веществ, природы электролита фона, температуры, соадсорбции ионов фона и других ПАОВ на скорость восстановления различных катионов и анионов, однако число исследований, которые были проведены с соблюдением вышеуказанных необходимых условий, невелико. [c.165]

    Сг и др. среди них особенно выделяются растворимые комплексные соединения молибдена — нафтенаты, резинаты, ацетилацетонаты, трет-бутилбензоаты, оксалаты, диолат-анионы и др. Природа лиганда при центральном ионе Мо + практически не влияет на скорость расходования гидроперекиси при эпоксидировании, например, метилциклогексена (рис. 55). Лишь в короткий начальный период скорость реакции зависит от структуры катализатора это означает, что во всех случаях именно в начальный период происходит модифицирование добавленного в реакционную систему катализатора в одну и ту же структуру (стадия активации ) [44]. [c.193]

    О преимуществах в решении всех главнейших проблем химии и, в частности, проблем управления реакциями синтеза вещества с заданными свойствами, которые появляются в связи с подъемом с уровня структурной химии на уровень учения о химических процессах, убедительно рассказал Н. Н. Семенов [12, с. 64]. Но в настоящее время этот уровень представляет собой еще во многом неосвоенную область. Пока не решены очень многие вопросы, относящиеся к выяснению природы промежуточных частиц (карбо-ний-ионы, ион-радикалы). Недостаточно ясными остаются вопросы о механизмах циклического переноса электронов, об их распространенности, о совмещенности с другими механизмами. Трудно осваивается в практике управления процессами теория абсолютных скоростей реакций. Масса белых пятен остается в области катализа. А главное, еще далеко не достаточно разработаны вопросы кинетики, макрокинетики и гидродинамики больших реакторных систем, лимитирующие решение сложнейшей проблемы масштабного перехода от лабораторных исследований к промышленным агрегатам. Все это пока целинные земли третьего уровня химии. О них подробнее см, гл, IV, [c.30]

    Присоединение галогенов. Возможно присоединение всех галогенов. Скорость реакции зависит от природы галогена и строения алкена. Фтор реагирует G воспламенением, иод — медленто на солнечном свету. Присоединение возможно по радикальному (Лр) и ионному механизму. [c.194]

    Как же установить, лежит ли комплекс 10 на пути реакции Если это так, то 1) либо образование комплекса 10 является лимитирующей стадией (а превращение 10 в 11 происходит намного быстрее), 2) либо образование комплекса 10 идет быстро, а скорость определяется превращением 10 в 11. Один из путей установления природы частиц, образующихся в лимитирующей стадии, базируется на информации об устойчивости комплексов, приведенной в табл. 11.1. Измеряют относительную скорость реакции данного электрофила с рядом соединений, перечисленных в табл. 11.1. Если относительная скорость коррелирует со стабильностью аренониевых ионов, то можно сделать вывод, что в медленной стадии образуется аренониевый ион, но если корреляция лучше при использовании данных [c.311]

    Механизм реакции включает нуклеофильную атаку иона или полярной группы R на водород [209]. Это подтверждается тем, что эффекты резонанса заместителей в R не оказывают заметного влияния на направление атаки. Так, при R = =арил, такие заместители, как ОМе и СРз, оба направляют атаку в орто-положение, а изопропил — в мета- и пара-, но преимущественно в жета-положение [210]. Именно такого результата можно было бы ожидать при учете только эффектов поля, без вклада резонансных эффектов, что и подтверждает тот факт, что атака происходит по водороду, а не по R. Другим доказательством того, что водород участвует в лимитирующей стадии, служат большие изотопные эффекты [211]. На скорость реакции влияет также природа группы R. Так, скорость реакции между трифенилметаном и R Li уменьшается в ряду R = = Ph H2> аллил>Ви> Ph> винил > Me [212]. [c.449]

    Реакция нейтрализации высокомолекулярных кислот (или оснований) складывается из двух реакций. Первая — гетерогенная реакция обмена ионов, обуславливающая зависимость хода кривых титрования от pH, концентрации и природы применяемого для титрования основания. Вторая реакция — собственно нейтрализация, протекающая в фазе раствора. Скорость суммарной реакции контролируется, как правило, скоростью процесса взаи-модиффузии противоионов в фазе ионита или фазе раствора, поэтому при титровании ионитов применяют метод отдельных навесок (проб), позволяющий контролировать pH во времени в каждой пробе (точке кривой титрования) вплоть до получения равновесного значения. [c.694]

    Природа реагирующих веществ. Здесь большую роль играют как внутримолекулярные (химические), так и меж-молекулярные (ван-дер-ваальсовы) силы. Вещества с неполярными молекулами, как правило, реагируют между собой наименее быстро. Это является результатом прочности внутримолекулярных связей и сравнительной слабости межмо-лекулярных сил. С другой стороны, полярные вещества в водных растворах чрезвычайно быстро взаимодействуют между собой в виде ионов. При значительных силах взаимодействия между молекулами реагирующих веществ скорость реакции возрастает. Полярность молекул является важным фактором именно в этом отношении. [c.27]

    Перегруппировка фенилгидроксиламина. — Фенилгидроксиламин перегруппировывается под влиянием кислотных катализаторов в /г-аминофенол. Такое перемещение гидроксила боковой цепи в ядро вряд ли представляет собой внутримолекулярную перегруппировку, так как природа образующихся продуктов зависит от применяемого растворителя. В водной серной кислоте фенилгидроксиламин превращается в л-аминофенол, а перегруппировка под влиянием серной кислоты в метиловом или этиловом спиртах приводит к образованию соответствующих эфиров — /г-анизидина или -фенетндина. Если катализатором служит соляная кислота, то преобладающим продуктом реакции является л-хлоранилин (Бамбергер, 1921—1925). По-видимому, перегруппировка является результатом нуклеофильной атаки. Инголд нашел, что скорость реакции пропорциональна кислотности и пришел к заключению, что в перегруппировке должна участвовать ионная сопряженная кислота, образованная фенилгидроксиламином  [c.216]


Смотреть страницы где упоминается термин Скорость реакции природы ионов: [c.78]    [c.118]    [c.78]    [c.78]    [c.136]    [c.269]    [c.266]    [c.36]    [c.155]    [c.152]   
Основы кинетики и механизмы химических реакций (1978) -- [ c.128 ]




ПОИСК





Смотрите так же термины и статьи:

Ионы скорость

Природа ионов

Скорость ионная

Скорость ионов



© 2025 chem21.info Реклама на сайте