Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алифатические соединения с полярными группами

    Поверхностно активные вещества широко применяют при электроосаждении металлов для получения плотных высококачественных осадков, обладающих блеском, мелкокристаллической структурой и т.д. Введение в электролит поверхностно активных веществ предотвращает образование на катоде шишек и дендритов, способствует коагуляции шлама, образующегося на аноде. Все многообразие применяемых поверхностно активных веществ можно разделить на три типа катионоактивные, анионоактивные и молекулярные. Многие из этих веществ содержат серу, азот и относятся к различным классам органических соединений. Существенное значение имеет структура поверхностно активных вещества. Так, например, активность алифатического ряда спиртов повышается по мере увеличения длины углеводородного радикала моно- и дикарбоновые кислоты обладают большей активностью, чем соответствующие спирты, а кислоты с большим числом полярных групп активнее кислот с меньшим числом полярных групп действие параизомеров фенола более эффективно, чем орто- и метаизомеров. Следовательно, чем больше число свободных пар электронов в органической молекуле, способных взаимодействовать с поверхностными атомами металла, тем большей активностью обладают эти вещества. [c.247]


    Все алифатические кислоты, эфиры, спирты, амины и некоторые другие соединения с давлением насыщенного пара ниже 100 Па несмотря на резкую разницу в длине цепи имеют практически равное с парафинами поверхностное натяжение. Из этого следует, что в жидкости на границе раздела фаз молекулы ориентированы полярной группой в жидкость, а неполярной — в газовую фазу. [c.187]

    Добавление к смазочным маслам 1—2% веществ с полярными группами (например, стеариновой кислоты, сернистых соединений, хлорированных восков) сильно повышает маслянистость смазочных масел, т. е. их способность к ориентированной адсорбции на трущихся поверхностях. Исследования по адсорбции стеариновой кислоты и ее солей стеклянной поверхностью показали, что молекулы располагаются перпендикулярно к последней. Алифатические соединения с СНз-группами распространяются по поверхности металлов очень быстро, чем объясняется явление смазки и загрязне- [c.102]

    Вязкость поверхностных пленок, образованных длинноцепочечными алифатическими соединениями, весьма чувствительна к природе полярных групп. У жирных кислот она обычно меньше, чем у соответствующих им спиртов, и тем более чем у аминов. Важное значение для вязкости поверхностного слоя имеет pH подложки. Например, монослои жирных кислот в щелочной среде ионизуются, что приводит к взаимному отталкиванию заряженных полярных групп. Аналогичным образом ведут себя длинноцепочечные амины на кислотной подложке. Следствием отталкивания является значительное снижение вязкости поверхностного слоя. [c.190]

    Очевидно, что наибольшее значение работы адсорбции для каждого соединения независимо от типа полярной группы будет соответствовать переходу в органическую фазу всей углеводородной цепи. Показано [38], что в системе алифатический углеводород — вода экспери ментальная и рассчитанная по уравнению (9) величина W для органических кислот и спиртов нормального ряда, совпадают. При расчете принимали, что вся углеводородная цепь находится в органической фазе, а полярная группа — в водной. [c.430]

    Отрицательный индуктивный эффект этих групп связан с большей электроотрицательностью атомов кислорода и азота по сравнению с атомом углерода. Алифатические соединения, содержащие такие группы, полярны. Дипольные моменты некоторых из них приведены ниже (в Д)  [c.334]


    ЧУК (СКН, Буна-К, пербунан и др.) — продукт сополимеризации в водной эмульсии бутадиена и нитрила акриловой кислоты. Наличие в молекуле Б.-н. к. полярной группы — СМ обусловливает его стойкость к действию минеральных масел, бензина и других алифатических углеводородов, а также растворимость в карбонильных (ацетон) и других полярных соединениях. Молекулы Б. -н. к. состоят из чередующихся звеньев бутадиена и нитрила акриловой кислоты, причем бутадиен полимеризуется, главным образом, в положении 1,4 и частично в 1,2  [c.49]

    С помощью тонкослойной хроматографии на силикагеле болгарские исследователи [3] разделили трео- и эритро-шо-меры соединений общей формулы Аг—СНХ—СНУ—Аг, где X и У —различные полярные группы (аминогруппа, гидроксильная, карбоксильная группы в свободной или модифицированной форме). Мезо- и рацемические формы эфиров алифатических дикарбоновых кислот или углеводородов [c.89]

    Однако не всегда наблюдается такая строгая закономерность между величиной дипольного момента растворителя и его способностью растворять парафины. В табл. 2 приведена температура кристаллизации парафинов из растворов с концентрацией 0,5 и 1,0% в различных полярных соединениях алифатического ряда. Соединения, содержащие одно и то же число атомов углерода в радикале, но отличающиеся своими полярными группами или атомами, по способности растворять парафин располагаются в следующий ряд  [c.97]

    Смазки чаще всего представляют собой производные алифатические соединения с длиной углеродной цепи ig- ga- Такие соединения, как правило, имеют одну или несколько полярных групп, обеспечивающих их совместимость с ПВХ. Однако в ряде случаев совместимость обеспечивается за счет боковых групп, например, у низкомолекулярного [c.199]

    Иногда по компонентному составу экстрактивные вещества древесины подразделяют на три группы алифатические соединения терпены и терпеноиды фенольные соединения. Эти группы соединений отличаются своими свойствами и локализацией в древесине. Алифатические соединения, терпены и терпеноиды экстрагируются малополярными растворителями, тогда как для фенольных соединений требуются полярные органические растворители, способные образовывать водородные связи. Алифатические соединения концентрируются главным образом в лучевой и древесной паренхиме, фенольные соединения - в ядровой древесине, а терпены и терпеноиды (в основном монотерпены и смоляные кислоты) - в смоляных ходах. Фактически при такой классификации не учитьшаются соединения, извлекаемые из древесины только водой и не растворимые в органических растворителях. [c.497]

    На избирательную способность полярных растворителей также влияют величина дипольного момента и особенности молекулярной их структуры. Исследования показали, что у органических соединений одного и того же класса, различающихся только функциональной группой, избирательная способность увеличивается с ростом дипольного момента их молекул. Такая закономерность характерна как для ароматических, так и для алифатических растворителей. Функциональные группы по их влиянию на избирательную способность растворителя располагаются в следующей последовательности  [c.271]

    Как правило, интенсивные полосы характерны для полярных групп. Однако, как указывалось выше, интенсивность полос значительно зависит от расположения атомов и влияния их друг на друга, т. е. от мезомерного и индуктивного эффектов. Уменьшение полярности групп, обычно связанное с влиянием заместителей, обладающих индуктивным эффектом, приводит к ослаблению интенсивности полос поглощения. Это влияние Проявляется в алифатических соединениях. Для ароматических систем, наряду с индуктивным эффектом, имеет место и мезомерный эффект, вследствие чего интенсивность полос поглощения аналогичных групп, измеренная в одинаковых условиях, больше, чем в алифатических. [c.187]

    Молекулы ПАВ состоят из гидрофобного, не имеющего сродства к воде углеводородного радикала (алифатическая цепь, иногда включающая и ароматическую группу), и одной или нескольких гидрофильных полярных групп, способных гидратироваться и придающих веществу растворимость. Такая структура, называемая дифильной, обусловливает способность ПАВ адсорбироваться на поверхности раздела фаз. Образуя мономолеку-лярный адсорбционный слой на поверхности раздела вода — воздух и вода — твердое тело, ПАВ уменьшают поверхностное натяжение воды. Снижением поверхностного натяжения воды и сродством гидрофобных частей молекул ПАВ к нерастворимым в воде волокнообразующим полимерам объясняются смачивающие, эмульгирующие, моющие и другие свойства этих соединений. [c.79]

    Несколько сложнее схема расчета дипольного момента для существенно неплоских молекул, например алициклических соединений или заторможенных конфигураций соединений алифатического ряда. В этом случае можно предложить два варианта нахождения углов наклона вектора моментов полярных групп к осям координат. [c.83]


    Неподвижные жидкости весьма общего применения. В особенности сложные эфиры, полученные из ароматических кислот они обычно не обладают заметной селективностью по отношению к широкому кругу химических соединений, так как содержат фенильные, алифатические или полярные группы. Грубо разделяют многие группы растворенных веществ в соответствии с летучестями и могут быть использованы, если находятся в чистом виде, в течение длительного времени при температуре примерно до 14СР (менее чистые продукты до 125°) [c.299]

    По своему химическому характеру диспергенты делятся па зольные и беззольные. Первые содержат в своем составе металлы в виде солей нефтяных сульфокислот (сульфонаты кальция или бария) или нафтеновых кислот. К незольным диспергирующим присадкам относятся алифатические алкила-мипы, а также так называемые полярные полимеры, представляющие продукты совместной полимеризации двух (или трех) мономеров, из которых один — носитель активных свойств присадки и содержит полярную группу (азотистое основание), а другой — неполярное соединение, являющееся олеофилыюй частью присадки, обеспечивающей ее растворимость в топливе. Третий мономер, если он прпсутствует, не выполняет дополнительных функций и служит удлинителем цепи сополимера. [c.324]

    Химические структуры асфальтенов чрезвычайно разнообразны от соединений с преобладанием алифатических элементов в молекулах до высококонденсированных ароматических систем - и от чистых углеводородов до гетероциклических соединений с различными полярными группами. Поэтому асфальтены рассматривают как класс веществ, объединенных не по химической природе, а по растворимости. Учитывая, что свойства нефтевмещающих пород и компонентный состав нефти изменяются и в пределах одной залежи, а также принимая во внимание физикохимическое воздействие пластовых вод, контактирующих с нефтью, и биохимические процессы, можно предполагать, что и физико-химические свойства асфальтенов различны. [c.9]

    Ван-дер-Ваарден (см. ссылки 10 и 97) установил, что дисперсии газовой сажи в алифатических углеродах стабилизуются ароматическими соединениями. Особенно это относится к ароматическим ядрам, связанным с длинной алкильной цепью. Согласно Ван-дер-Ваардену, поверхности частиц газовой сажи плотно покрыты полярными группами С—О. Такого рода диполи притягивают поляризованные молекулы или же молекулы, способные поляризоваться. Соответственно с эффектом Керра, ароматические молекулы проявляют еще более тесное взаимодействие с полярными группами С—О. Благодаря пространственному препятствию , т. е. благодаря приданию устойчивости путем сольватации или защитного коллоидного действия алкильные боковые цепи не дают частицам близко подходить друг к другу. При этом следует отметить, что эффективность стабилизации возрастает по мере либо увеличения длины боковой алкильной цепи, либо увеличения числа боковых цепей. [c.106]

    Синтетические депрессоры представляют собой соединения, включающие один или несколько алифатических радикалов и полярные группы. При синтезе депрессорных присадок обычно получается смесь, содержащая молекулы одного класса, различающиеся прежде всего по молекулярной массе [175, 176]. Показано [177], что депрессорная активность поверхностно-активных веществ одного гомологического ряда по отношению к высокопарафинистым нефтяным фракциям изменяется по-раз-ному в зависимости от длины алкильной цепи. При этом, как правило, невозможно установление корреляции между параметрами фазовых переходов в НДС и депрес-сорной активностью поверхностно-активного вещества. Несмотря на это представляется возможным детализировать в некоторой степени механизм взаимодействия поверхностно-активных веществ с компонентами нефтяных систем, в частности рассмотреть изменение при этом структурообразования в них. [c.157]

    Для того чтобы ПАВ было способно образовывать мицеллы, оно должно удовлетворять двум требованиям — с одной стороны, (/иметь достаточно большой углеводородный радикал, снижающий / растворимость в воде, а, с другой - /обладать достаточно сильной полярной группой, способствующей его растворимости. Этому требованию удовлетворяют не все поверхностно-активные вещества. Например, для гомологического ряда алифатических спиртов ми-целлообразование вовсе не характерно. При этом для соединений с числом углеродных атомов меньше 7 мицеллообразованию мешает малая длина углеводородного радикала, а для более высоких гомологов — сравнительно низкая гидрофильность полярной группы. Известно также, что для многих коллоидных ПАВ, например, для оксиэтилированных спиртов, независимо от числа оксиэтиле-новых групп, т. е. от полярности гидрофильной части молекулы, мицеллообразование становится возможным лишь при Длине углеводородного радикала, превышающей 7—8 углеродных атомов. [c.400]

    Увеличение поверхностной активности насыщенных алифатических соединений при переходе от границы с воздухом к границе со ртутью наблюдается также в растворах тиосоединеннй, донор-но-акцепторное взаимодействие которых с металлом происходит за счет неподеленной пары электронов у атома серы, и в растворах органических веществ с большим числом кислородсодержащих полярных групп (сахара, глицерин и др.). Адсорбированные молекулы этих соединений, в отличие от одноатомных спиртов и кислот, плоско располагаются на границе со ртутью, благодаря чему становится возможным донорно-акцепторное взаимодействие за счет неподеленных пар электронов у атомов кислорода. [c.42]

    Схема строения молекул асфальтенов по данным рентгеноструктурного анализа представляется в следующем виде. В молекуле располагаются друг над другом ароматические кольца. Размер колец 8,5—15 А. Расстояние между плоскостями колец от 3,55 до 3,70 А. Кольца соединены между собой парафиновыми цепочками или нафтеновыми группами. Ароматические кольца притягивают цепочки и нафтеновые группы за счет полярных сил. Расстояния между трехмерными алифатическими или нафтеновыми группами 5,5—6,0 А. Приблизительно пять ароматических колец, соединенных друг с другом, образуют пачку толщиной 16— 20 А. В растворителе с достаточно полярными молекулами, например, в смолах, ароматических углеводородах, которые способны насыщать силы притяжения между ароматическими конденсированными кольцами асфальтенов, последние будут пептизировать-ся [85]. Наоборот, в низкополяриых растворителях, например в парафиновых углеводородах, асфальтены будут ассоциироваться. [c.30]

    Для больпшнства синтетических моющих веществ характерно линейное строение молекул, длина которых значительно превышает поперечные размеры. Моющее вещество, применяемое в водной среде, должно состоять из двух химических групп с различными свойствами, соединенных в одной молекуле одна группа имеет сродство с удаляемым загрязнением, другая — с водой. В качестве лиофильной части молекулы служит обычно углеводородная цепь со слабыми побочными валентными спламп. В простейшем случае то алифатический нормальный углеводородный остаток радикал R, содержащий 10—16 углеродных атомов. Цепь может быть разветвленной, а также, кроме цепи, в радикал могут входить ароматические и нафтеновые кольца. В качестве простейшего примера водорастворимой гидрофильной части молекулы могут служить полярные группы — GOONa (натриевая соль жирной кислоты), — SO. jONa (натриевая соль алкилбензолсульфоната), — OSOaONa (натриевая соль алкилсульфата) и т. п., обладающие резко выраженными дополнительными валентными силами. [c.455]

    При помощи инфракрасной спектроскопии и аналитических методов можно определять структурные характеристики молекул, содержащихся во всех фракциях битумов, в частности в асфальтеновых, с расшифровкой типа конденсации, длины алифатических цепей, ароматичности и полярности> ИК-спектроскопию применяют также для изучения порфиринов ванадия и никеля, содержащихся в нефтях и битумах, для исследования кислородсодержащих функциональных групп в окисленных битумах. Таким методом показано, что омыляемые вещества битума содержат главным образом эфирные группы и что почти полностью отсутствуют ангидриды и лактоны. Методом селективного поглощения фракций показано различие химического состава битумов, полученных из разного сырья, а также изменение их строения по мере углубления окисления сырья. Растворы в четыреххлористом углероде или сероуглероде компонентов окисленных битумов (типов гель, золь — гель и золь), полученных разделением с использованием бута-нола-1 и ацетона и подвергнутых инфракрасному исследованию в области спектра 2,5—15 мк мкм) с призмой из хлористого натрия, показали, что в сильнодисперги-руемых битумах типа золь самое высокое содержание ароматических колец в каждом компоненте [480], Количество групп СНз почти одинаково в алифатических и циклических соединениях. Метиленовых групп парафиновых цепей значительно больше содержится в соединениях насыщенного ряда. Как правило, их число уменьшается при переходе битума от типа гель к типам золь — гель и золь. [c.22]

    Влияние полярной или несущей электрический заряд группы передается на другую группу или реакционный центр переходного состояния и непосредственно через пространство. Это так называемый эффект поля. Если воздействующая группа -диполь, то энергия воздействия определяется дипольным моментом, расстоянием и ориентацией диполя (/-эффект со80/г). Полярный эффект в алифатических соединениях передается двумя путями по системе ст-связей и напрямую через пространство. Два этих способа сопоставляли путем сравнения расчета с экспериментом на примере диссоциации двухосновных кислот строения [c.229]

    Наличие в нейтральных веществах предельных углеводородов и алифатических одноатомных спиртов с 18—26 углеродными атомами, а также других природных соединений с 26— 30 атомами углерода преимущественно с одной полярной группой придает продукту свойства пластификатора и гидрофоби-затора. Присутствие в неомыляемых до 20 7о жирных кислот в виде натриевых солей и в свободном виде обеспечивает повышенную прочность древесноволокнистых плит. Положительные результаты получены при использовании неомыляемых веществ в качестве гидрофобизатора при изготовлении древесноволокнистых плит, а также при введении неомыляемых веществ в пропитывающие составы для этих плит. [c.105]

    Кроме того, как это видно из данных табл. Гб, полярность молекул сорбата и неподвижной фазы существенно влияет на концентрационный эффект Аг- На неполярной неподвижной фазе— сквалане — максимальный концентрационный коэффициент наблюдается для самого полярного сорбата (ацетон), в то время как на полярном оксидипропионитриле наибольшее значение Ла зафиксировано для бензола, молекула которого обладает минимальной полярностью из сравниваемых соединений. Следовательно, концентрационный коэффициент пропорционален разности полярностей неподвижной фазы и сорбата, т. е. степени неидеальности образующегося в газохроматрграфической колонке раствора. В работе [21] определены также концентрационные коэффициенты для алифатических спиртов в оксидипропионитриле. Гидроксильная группа спирта образует водородную связь с полярными группами оксидипропионитрила, энергия взаимодействия метильных и метиленовых групп с молекулой оксидипропионитрила меньше, чем энергия водородной связи. Следовательно, наиболее эффективное взаимодействие сорбата и неподвижной фазы наблюдается лишь в случае минимальных стерических препятствий для образования водородных связей. [c.38]

    Вязкость длинноцепочечных алифатических соединений весьма чувствительна к природе полярных групп. У жирных кислот вязкость обычно меньше, чем у соответствующих спиртов и тем более аминов. Важное значение имеет pH подложки. В кислой среде длинноцепочеч- [c.118]

    Вещество, растворенное в жидкости, может повышать или понижать ее поверхностное натяжение. Если растворенное вещество повышает поверхностное- натяжение, его называют поверхностно-неактивным. Большинство неорганических электролитов поверхностно-неактивны. Вещество, понижающее поверхностное натяжение, называется поверхностно-активным. К таким веществам относятся белки, мыла и мнол ество других органических соединений. Поверхностно-активные вещества, снижая поверхностное натяжение, скапливаются в поверхностном слое. Таким образом, растворение поверхностно-активных веществ приводит к положительной адсорбции. Молекулы поверхностно-активных веществ (высших жирных кислот, белков) на поверхности воды образуют ыономолекулярные пленки, т. е. слой толщиной в одну молекулу. При достаточной концентрации вещества в поверхностном слое молекулы алифатических соединений ориентируются так, что их полярные группы погружены в воду, а углеводородные радикалы расположены вертикально в газовой фазе. Макромолекулы белков, имеющих глобулярную структуру, попадая на поверхность раздела фаз, развертываются с разрывом ряда связей. Гидрофильные группы обращены в воду, а гидрофобные выходят наружу. Зная количество и молекулярный вес вещества, покрывающего мономолекулярным слоем определенную поверхность воды, можно вычислить площадь, приходящуюся на одну молекулу, и толщину пленки. [c.90]

    В 1863 г. Липскоумб [1] впервые предложил применять активный уголь для очистки питьевой воды. Первое значительное исследование активного угля касалось влияния молекулярной структуры и pH раствора на эффективность адсорбция. В 1929 г. Фелпс и Петерс (Англия) [2] изучили зависимость адсорбции низших жирных кислот и простых алифатических аминов от pH раствора и степени диссоциации кислот и оснований. Оказалось, что адсорбируются только недиссоциированные молекулы и что адсорбция органических веществ в водных растворах аналогична адсорбции газов. В начале 40-х годов Челдин и Уиль-ямс сделали два важных наблюдения 1) адсорбция изученных ими 33 аминокислот, витаминов и родственных соединений активным углем (Dar o 6-60) соответствует изотермам адсорбции Фрейндлиха 2) наличие и положение полярных групп и от сутствие ароматических ядер определяет возможность адсорбции органических веществ активным углем из воды. Задача этих исследователей состояла в выявлении возможности использования угля в аналитических целях. Однако вследствие высокой концентрации изучаемых органических веществ сделанные выводы нуждаются в уточнении применительно к их адсорбции из реальных водоемов или промышленных сточных вод. [c.95]

    П рисадки, предотвращающие укрупнение мелкодисперсной фазы в топливе и, следовательно, разрушение коллоидной системы, характеризуются высокой полярностью. По своей природе они могут быть гидрофобными и гидрофильными. Гидрофобными являются соединения с углеводородным радикалом знaчиteльнoгo размера, обеспечивающим хорошую раствори.мость в топливе при минимальном сродстве присадки к воде. Пример таких соединений— алифатические амины. Гидрофильными являются соединения, у которых количество, характер и расположение в молекуле полярных групп таково, что присадка отличается сильным сродством к воде, образуя с ней очень прочные комплексы. Сродство присадок проявляется не только по отношению к воде, но и по отношению к загрязнениям топлив (минерального и органического происхождения). Эти особенности присадок оказывают весьма важное влияние на эксплуатационные свойства топлив. [c.280]

    Типичными моющими присадками являются соли металлов, большей частью — щелочноземельных, соединения с длинными алифатическими, цепями, содержащие полярные группы кислого характера, напри1 1ер гидроксильные, карбоксильные, сульфоновые,. фосфоновые, фосфатные и др. В зависимости от содержания металлического компонента различают нейтральные, щелочные и высокощелочные моющие присадки. [c.272]

    Наиболее удобным и обычно более точным способом включения специфических для данного типа соединений эффектов взаимовлияния является учет их в неявном виде посредством использования в расчетах моментов связей и групп, вычисленных из дипольных моментов нескольких исходных соединений этого типа. Фактически уже разделение групповых моментов на моменты в алифатическом и ароматическом рядах (табл. 10, стр. 79), может слул ить примером практического использования указанного приема. При вычислении момента 1,2-дихлорциклогексана (п. 2) мы также пользовались в качестве момента связи С—С1 моментом хлорциклогексана, несколько отличным от момента, приведенного в табл. 19. Дальнейшие примеры использования этого подхода приведены в гл. IV, п. 5. О целесообразности такого подхода свидетельствует, в частности, то обстоятельство, что даже в насыщенных системах относительная конфигурация полярных групп может приводить к различиям в величинах их моментов, достигающим иногда 1—2 О [88]. [c.98]

    В алифатических соединениях на нитрильную группу оказывает влияние только /-эффект. Не трудно заметить, что заместители, имеющие больший электроноакцепторный —/-эффект, стремятся уменьшить полярность группы и снижают интенсивность полосы поглощения (поведение F Ha N является исключением). Объяснить сдвиг полос не так просто, поскольку здесь играет роль также эффект масс. В ароматических соединениях действуют и /- и М-эффекты, однако последний эффект оказывает на интенсивность полос решающее значение. Интенсивности полос в ароматических соединениях больше, чем соответствующие интенсивности в алифатическом ряду. Интенсивность увеличивается в случае + М. гидррксильной группы и уменьшается для —М нитрогруппы. Разница между орто-, мета- и ара-изомерами определяется также эффективностью передачи М-эффекта. а- и у-Углеродные атомы пиридиновых ядер более положительно заряжены, чем -углеродные атомы это видно из данных для трех пиридиновых производных. [c.78]


Смотреть страницы где упоминается термин Алифатические соединения с полярными группами: [c.353]    [c.71]    [c.400]    [c.235]    [c.201]    [c.54]    [c.9]    [c.531]    [c.141]    [c.202]    [c.324]    [c.167]    [c.34]    [c.413]   
Смотреть главы в:

Масс спектрометрия в органической химии -> Алифатические соединения с полярными группами




ПОИСК





Смотрите так же термины и статьи:

Алифатические соединения

Полярность группы

соединения группа



© 2024 chem21.info Реклама на сайте