Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод идеальной точки

    Решение задач многокритериальной или векторной оптимизации осуществляется с использованием принципов выделения главного критерия, скалярнзации вектора целевых функций, равномерности, идеальной точки, квазиоптимизации локальных критериев методом последовательных уступок, справедливого компромисса, оптимальности по Парето и ряда других. [c.192]

    Метод линейного сканирования, а также методы множества чувствительных точек и чувствительной линии имеют то преимущество перед методами восстановления по проекциям и фурье-интроскопии, что им свойственна простота обработки данных в частности, информация от всей линии может быть обработана сразу и нет необходимости накопления всего трехмерного массива данных. Медленное физическое движение живых объектов резко ограничивает разрешающую способность двумерных и трехмерных методов фурье-интроскопии, поскольку в каждую точку спектра дает вклад весь набор данных во временной области. Время для получения изображения одной линии сравнительно короче и поэтому такое изображение менее чувствительно к движению. В этом отнощении метод чувствительной точки является идеальным, так как измеряется непосредственно локальная спиновая плотность, и за исключением, может быть, согласованной фильтрации, обработки информации не требуется. Однако для получения полного изображения чувствительность метода чувствительной точки заметно ниже, чем у всех других методов. [c.663]


    На таких диаграммах можно легко проследить ход тех изменений, которым подвергается вещество (испарение, конденсация, сжатие, расширение, охлаждение, изменения адиабатические, изотермические, изоэнтальпные и другие). Для любой точки линии изменения можно быстро найти на диаграмме параметры, характеризующие состояние вещества (энтропию, энтальпию, давление, объем, температуру). В работе, связанной с развитием технологического метода, когда обязателен, например, выбор оптимального варианта процесса, проходящего при рассмотренных нами изменениях системы, энтропийные диаграммы незаменимы. Кроме того, следует помнить, что, особенно в областях низких температур и высоких давлений, поведение реальных газов резко отличается от поведения идеального газа, и расчеты по рассмотренным выше уравнениям требуют внесения поправок, трудно поддающихся вычислению, а иногда и не очень точных. Проведение расчетов с использованием энтропийных диаграмм, составленных по экспериментальным данным, обеспечивает получение значительно более точных результатов в короткое время. [c.142]

    Применение фазоселективного выпрямителя в переменнотоковой полярографии дает возможность полностью устранить емкостный ток, поскольку он опережает фарадеев ток (остаточный ток, обусловленный электродной реакцией деполяризатора). Ход перемениотоковой полярограммы становится понятным пр сопоставлении переменнотоковой полярограммы с постояннотоковой (рис. Д. 120). На постояннотоковой полярограмме (верхняя диаграмма) чистому фоновому электролиту соответствует кривая 1 (штриховая линия). Подъем на этой криво/г при. положительном потенциале ртутного капельного электрода обусловлен анодным растворением ртути, а при большом отрицательном значении потенциала— выделением катионов фонового электролита. При добавлении к фоновому электролиту деполяризатора ход кривой 2 вначале будет таким же. Вблизи потенциала полуволны деполяризатора возникает волна, а затем на кривой снова наблюдается горизонтальный участок до значения потенциала разложения фонового электролита. Небольшое переменное напряжение, наложенное на линейно возрастающее постоянное напряжение переменнотоковой полярографии (в точках а, б, в), вызывает в области небольшого возрастания постояннотоковой полярограммы (а и в) незначительное изменение силы тока, но большое изменение потенциала полуволны в области б, обозначенное б. Поскольку, как указано выше, протекает только переменный ток, на переменнотоковой полярограмме (нижняя диаграмма) наблюдаются только эти изменения. Для обычных деполяризаторов возникают максимумы при значениях их потенциалов полуволн. Таким образом,, в идеальном случае переменнотоковая полярограмма совпадает с первой производной соответствующей постояннотоковой полярограммы (рис. Д.121), а также с дифференциальной полярограммой. Существенным отличием является очень небольшой максимум в случае необратимого электродного процесса,, поскольку малого значения переменного напряжения уже недостаточно для окисления и восстановления соответствующего количества деполяризатора на электродах. Поэтому применение переменнотоковой полярографии ограничено обратимостью электродных реакций. Однако этот метод имеет то преимуще- [c.302]


    В соответствии с фиг. 3.6 Уу есть объем обоих шаров плюс часть дифманометра, а Уг—объем верхнего шара и той же части диф-манометра. Отношение объемов г обычно определяется с помощью одного из газов, близких к идеальному, уравнение состояния которого уже известно. Недостатком такого метода является то, что используется только одно отношение давлений и нет внутренней проверки для определения систематических ошибок. Первое применение этого метода для паров бензола [45] дало значения В, которые плохо согласуются с данными других авторов [48]. Результаты более поздних измерений при повышенных температурах [47] оказались не намного лучше [49]. [c.86]

    В идеальной колонке на каждой тарелке должно устанавливаться равновесие между жидкостью и паровой фазой. В этом случае, применяя для оценки работы колонки графический метод, можно охарактеризовать процессы, протекающие на отдельных тарелках, при помощи кривых равновесных состояний жидкость — пар рассматриваемой бинарной смеси (см. рис. 233). Пусть смесь в перегонной колбе имеет состав х, а пар, поступающий на первую тарелку,— состав у. Если колонка работает идеально, то тот же состав у должна иметь и флегма, стекающая с первой тарелки [c.219]

    Для устранения недостатков обычных реакторов проточного метода нами предложена конструкция блочного многоканального изотермического реактора, моделирующего промышленный конвертор, с длиною слоя катализатора 150—300 см. Благодаря высокой теплопроводности металла, из которого изготовлен блок, поддерживается изотермичность по длине и сечению слоя катализатора. Условия катализа в реакторе соответствуют методу идеального вытеснения. Возможность определения концентрации реагентов в десяти точках по длине слоя катализатора позволяет получить вид кинетического уравнения и решать задачи оптимизации. Кроме того, разработана конструкция блочного капсульного однорядного реактора метода идеального вытеснения, предложенного М. И. Темкиным с сотрудниками [3, 4]. Реактор представляет собой металлический блок, размером 7X7 см, с семью каналами, в которые помещаются капсулы из того же металла. В каналах капсул в один ряд располагаются зерна исследуемого контакта и теплоносителя. В однорядном слое контакта контролируется изотермичность и определяются градиенты концентраций, что позволяет определять вид кинетических уравнений. [c.102]

    Если известно, что равновесные соотношения для системы далеки от идеальных, то для определения необходимого числа тарелок применяются расчеты от тарелки к тарелке . Минимальное флегмовое число может быть определено точным методом (см. стр. 359), но этот метод очень трудоемок. Впрочем, предложены полезные приближения . [c.374]

    Хотелось бы отметить, что в требованиях, предъявляемых методом идеальной хроматографии к эксперименту, заложены внутренние противоречия. В самом деле, с одной стороны, для достижения равновесия необходимо, чтобы скорость потока газа-носителя была минимальной при этом, однако, становится значительным влияние продольной диффузии, искажающее результат. Если же увеличить скорость и тем самым уменьшить влияние диффузии, то сильнее проявятся кинетические факторы. Таким образом, практически оба основных требования идеальной хроматографии одновременно не могут выполняться. [c.126]

    Для построения первичной аналитической прямой линии необходимо по крайней мере три точки с координатами с, ДР, полученные по двум спектрограммам для каждого из трех эталонных образцов (рис. 5.35, а). Прямая линия должна быть проведена через эти точки так, чтобы была бы минимальна, а бУ равна нулю. Здесь бУ обозначает разность ординат идеальных точек, лежащих на прямой линии, и реальных точек, имеющих одинаковые абсциссы (рис. 5.35,а). Однако для построения первичной аналитической прямой линии желательно использовать более, чем три точки (рис. 5.35, б). На практике первичную прямую линию можно надежно построить с помощью прозрачной линейки, хотя целесообразнее применять математико-статистические методы с использованием ЭВМ (разд. 8.1.8). [c.77]

    В рамках такой классификации наиболее перспективным представляется первый подход к решению задачи расчета процесса многокомпонентной ректификации в силу его общности. Основным недостатком такого подхода является необходимость использования для решения задачи ЭВМ с очень большим быстродействием и объемом оперативных запоминающих устройств [130, 247, 244]. Для второй группы методов характерно то обстоятельство, что размерность решаемой системы уравнений удается снизить лишь в случае использования различного рода упрощений (идеальность разделяемой смеси, теоретическая ступень разделения). Если же учитывать, например, неидеальность разделяемой смеси, то размерность задачи возрастает до первоначальной [229, 247]. Методы третьей группы рекомендуется использовать лишь при проведении большого числа однообразных расчетов (например, при использовании их с некоторыми алгоритмами оптимизации). Главные же их недостатки заключаются в том, что для задач даже одного и того же класса слишком велика вероятность получения расходящегося итерационного процесса, например в случае зависимости скорости сходимости от величин режимных параметров [215]. Аналогичные недостатки присущи и ряду других используемых в настоящее время алгоритмов. [c.51]


    Метод импульсного возбуждения. Молекулы возбуждают коротким оптическим или электронным импульсом и наблюдают последующее затухание флуоресценции во времени. Преимуществом метода является то, что молекулы не возбуждаются во время намерения флуоресценции. Для данного метода идеально подходят импульсные лазеры или лазеры с синхронизацией мод [186]. Прн пспользовании импульсных лазеров большой мощности, имеющих обычно низкую частоту повторения, после каждого имиульса детектируется много фотонов флуоресценции. Затухание флуоресценции может непосредственно наблюдаться на экране осциллографа [187], запоминаться в переходном устройстве [188] или выводиться на дисплей с усреднением сигналов. [c.293]

    Когда начиналось развитие науки о теплопередаче, ее задачи были рассмотрены аналитически на основе дифференциальных уравнений Навье —Стокса и Фурье — Кирхгофа. Большой заслугой аналитических рассуждений было фундаментальное и точное выяснение физической стороны явления, т. е. основательное ознакомление с механизмом теплоотдачи и установление ее зависимостей. Однако практические результаты математического анализа невелики. Решение аналитических уравнений, к сожалению, возможно только для некоторых очень простых случаев и то при упрощающих предпосылках. Такие предпосылки, идеализирующие условия процесса (например, допущение идеальной ламинар-ности потока, полной несжимаемости жидкости, неизменности физических параметров и другие чисто математические упрощения), часто приводят к результатам, не согласующимся с опытом. Тем не менее в ряде случаев решения, полученные с помощью математического анализа, оказались настолько хорошим приближением, что за отсутствием достаточно обширного контрольного опытного материала пользовались всеобщим признанием. Установленные затем экспериментально поправки к ним оставляли часто неизменным основное содержание функции. Более доступными для математического анализа оказались случаи, связанные с ламинарным движением потока. Турбулентность потока создает дополнительные большие трудности, часто непреодолимые, особенно при запутанных гидродинамических условиях. Если бы не очень ограниченные возможности точного аналитического метода исследования, то мы не были бы вынуждены искать других путей. [c.321]

    То, что явление радиоактивности связано с одним из наиболее тяжелых изотопов, уже в 1927 г. обнаружил Хевеши, частично разделив изотопную смесь методом идеальной дистилляции (см. т. II). Оказалось, что та часть, которая была обогащена более тяжелыми изотопами, обладала большей радиоактивностью. Но радиоактивность была только на 4,4% выше радиоактивности обычного калия, в то время как изотоп как показало [c.165]

    Для случая неаднабатнческих реакторов и реакторов, снабженных рубашками, простейший метод, позволяющий в первом приближении учесть изменение температур, предусматривает допущение о локализации этих градиентов у стенки. Иными словами, предполагается, что по поперечному сечению реагирующей среды температура системы имеет постоянное значение Т( (как это имеет место в реакторе идеального вытеснения), но у стенки она меняется до значения Тц7, причем изменение носит ступенчатый характер (рис. 10,г). Такое допущение, несомненно, является весьма грубым, хотя оно и лучше допущения о равенстве и Т у. С учетом сказанного расчет адиабатического реактора проводят так же, как и реактора идеального вытеснения (как это указано в 2.2, а также в Приложении II к настоящей главе), с той лишь разницей, что теперь в уравнение теплового баланса вводится член, характеризующий теплопередачу через стенку. Для наглядности рассмотрим цилиндрический реактор вытеснения, у которого 11А — площадь стенки, соответствующая элементу объема реактора с1Уг, приведенного на рис. 9. Если г — радиус цилиндра, то нетрудно видеть, что ёА =2с1Уг/г. Следовательно, количество тепла, перенесенного от среды к стенке в элементе йУг, будет равно [c.54]

    В задачу настоящего раздела не входит изложение теории образования азеотропов, классификации жидкостей, с точки зрения формирования молекулярных связей, методов предсказания отклонений растворов от идеальности или избирательных свойств добавляемых агентов, механизма изменения относительной летучести об этом можно прочесть в специальной литературе, посвященной данным вопросам. [c.328]

    Метод активности в термодинамике является формальным приемом и заключается, как видно из изложенного, во введении новой функции состояния, промежуточной между химическим потенциалом и концентрацией. Он ничего не дает для понимания причин, вызывающих то или иное отклонение данного раствора от закона идеальных растворов. Однако этот метод обладает существенными положительными свойствами—упрощает формальную математическую разработку термодинамики растворов. [c.208]

    Г. Химические методы. Обсуждавшийся выше метод зеркал является частным случаем более общего метода определения свободных радикалов, основанного на большой химической реакционноспособности радикалов. Так, если К представляет собой радикал, а — некое стабильное химическое соединение, способное реагировать с К, то введение в кинетическую систему приведет к изменению первоначальных концентраций и образованию новых продуктов. С этой точки зрения вещество выступает как ингибитор первоначальной реакции. Идеальный ингибитор реагировал бы с радикалами полностью и тотчас же, как только они образуются, и давал бы полную л несомненную информацию о первых стадиях ценной реакции на основе изучения новых образующихся продуктов. [c.97]

    Обобщая полученные результаты и опираясь на многочисленные расчеты, следует сказать, что, заменяя в некоторой области диаграммы реальный газ идеальным, у которого / у < I, мы получаем значения КПД, удовлетворяющие нас по точности совпадения с действительными значениями. То обстоятельство, что при йу < 1 в процессе сжатия i) o < ( ,, а в процессе расширения 1]пол > 4s. > огя в реальном рабочем веществе все будет наоборот, может быть препятствием к применению метода условных температур только при ky <<С 1. Однако, как показывает опыт, даже для такого вещества как R12, обладающего высокой сжимаемостью, средние значения показателя изоэнтропы ky, определенные по формулам (3.47) и (3.48) для конечных интервалов давлений, становятся меньше единицы только в области, близкой к критической точке, и отличаются от нее не более чем на 2—4 %. При таких близких к единице значениях ky изоэнтропный и политропный КПД практически совпадают независимо от того, будет k , больше единицы или меньше ее. [c.123]

    Применение метода условных температур позволяет представить все уравнения в той же форме, что и для идеального газа, однако для расчетов необходимо определить сами условные температуры и показатель изоэнтропы k -. Для этого используются некоторые из описанных выше процедур определения термических и калорических параметров рабочего вещества. Покажем это на примере концевой ступени, но выписывать формальные и фактические параметры всех используемых процедур не будем, ограничившись только их названиями  [c.199]

    Для определения точек плавления применяются различные методы [225]. Для идентификации пригодным является капиллярный метод [226]. Для чистого соединения точка плавления, получающаяся таким образом, будет достаточно точной, для нечистых веществ точка плавления находится в некотором температурном интервале. Измерение точки плавления не может быть применено для идентификации более высоких нормальных парафинов, так как они образуют настолько идеальные растворы, что точка плавления является линейной функцией состава. При этом не образуется эвтектики, и смеси в широком интервале ведут себя как чистые жидкости. [c.193]

    Графический метод обладает преимуш,еством наглядного представления о взаимной связи между изучаемыми величинами и позволяет непосредственно осуш,ествлять ряд измерительных и вычислительных операций (интерполяция, экстраполяция, дифференцирование, интегрирование). Он дает возможность сделать эго, и зачастую с достаточно высокой точностью, не прибегая к расчетам, которые могут оказаться сложными и трудоемкими, а подчас и невозможными вследствие того, что некоторые зависимости не всегда можно облечь в математическую форму. Чертежи облегчают сравнение величин, позволяют непосредственно обнаружить точки перегиба (например, при титровании), максимумы и минимумы, наибольшие и наименьшие скорости изменения величин, периодичность и другие особенности, которые ускользают в уравнениях и недостаточно отчетливо проявляются в таблицах. Известно, папример, что метод физико-химического анализа основан именно на построении диаграммы свойство—состав с последуюш,им их анализом эти диаграммы позволяют, в частности, установить степень устойчивости химического соединения, величину и характер отклонения раствора от идеального и т. п. Кроме того, нри помош,и графика можно определить, суш,ествует ли какая-нибудь зависимость между измеренными величинами, а иногда — при ее наличии — найти и ее математическое выражение. [c.441]

    При использовании метода идеальной точки оптимальным является план х , который на множестве допустимых планов О минимизирует оасстояние до, ,идеальной точки d(r(лгo),F ) = шn, с1 Р х),Р ). [c.193]

    Для жидкостей, которые не могут рассматриваться как идеальные смеси, уравнения, аналогичные уравнениям Максвелла—Стефана, отсутствуют. Недостатки кинетической теории жидкостей более существенны для многокомпонентных смесей, чем для бинарных, поскольку для последних необходимо знание только одного коэффициента диффузии, который может быть измерен или предсказан полуэм-пирическими методами, в то время как для многокомпонентной смеси число подлежащих определению коэффициентов диффузии значительно возрастает. [c.213]

    В одной из первых опубликованных профамм, в которой использовалась классическая потарелочная итерационная процедура Тиле и Геддеса, был применен 0-метод сходимости, который дает удовлетворительные результаты при расчете простых ректификационных колонн. Использование метода сходимости в сочетании с методикой Тиле и Геддеса возможно для метода Льюиса-Матисона в результате применения матричных методов, идеально подходящих к цифровым ЭВМ. Однако использование методов разреженных мафиц было неэкономно с точки зрения машинного времени и памяти, и поэтому не нашло сначала широкого применения. В последующем в ряде работ впервые для уменьшения размерности мафичных уравнений были использованы методы декомпозиции. Однако их применение сильно офаничивало диапазон решаемых задач, возможную степень учета неидеальности жидкой фазы и диапазон летучестей компонентов в питании. [c.236]

    С тех пор сочетание газовой хроматографии и масс-спектро-метрни выдвинулось в ряд наиболее эффективных аналитических методов и получило широкое распространение во всем мире. Основная причина этого заключается в том обстоятельстве, что аналитические возможности этих двух методов при их комбинированном использовании почти идеально дополняют друг друга. Другим решающим фактором, способствующим совместному применению этих методов, является то, что их сочетание позволяет получить важную информацию в большом объеме. Лавинообразное накопление данных очень скоро сделало актуальной необходимость применения вычислительной техники для полной, поддающейся интерпретации и экономной с точки зрения затрат времени обработки потока результатов измерений. В последнее время благодаря внедрению современной вычислительной техники в хромато-масс-спектральные системы их аналитический потенциал стал, бесспорно, выше по сравнению с тем, что может дать использование этих методов по отдельности. Широкому распространению хромато-масс-спектрометрии способствовало также появление на мировом рынке большого количества постоянно совершенствуемых приборных систем. [c.276]

    Если режим движения жидкости ближе к турбулентному, чем к ламинарному, то, кроме рассмотренных выше факторов, следует учитывать также и влияние турбулентной диффузии. Значение коэффициента турбулентной диффузии во всем объеме реактора, за исключением его части, непосредственно прилегающей к стенке, как правило, значительно больше значения коэффициента обычной молекулярной диффузии, и его величина возрастает с увеличением числа Рейнольдса В этом случае радиальная компонента оказывает также положительное воздействие, поскольку она компенсирует эффекты, препятствующие применению простого метода расчета, описанного в 2.2 и основанного на модели идеального вытеснения среды. В ряде работ [22—29] показано, в каких случаях продольная турбулентная диффузия влияет обратным образом и исключает возможность исиользования модели идеального вытеснения. В недавно опубликованных работах Левеншпиля [30], Крамерса и Уэстертерпа [9] приводятся интересные обзоры по данному вопросу. В первом приближении для простых реакций можно принять, что, если [c.60]

    Для получения заданной температуры образцы охлаждались до температуры несколько ниже тройной точки, что приводило к затвердеванию аргона и ксенона. Твердое состояние образцов обнаруживалось при наблюдении дифракционных максимумов, характерных для кристалла. Затем каждый образец слегка подогревали до тех пор, пока эти максимумы не исчезли. Разность между температурой, при которой наблюдалась смесь твердой и жидкой фаз, и температурой, при которой дифракционные максимумы соответствовали только жидкой фазе, составляли 0,3 0,1 К. Кривые интенсивности получены в монохроматическом молибденовом излучении с помощью 0 — 0 -дифрактометра. Регистрация рассеянного излучения производилась в интервале 5 от 0,3 до 14 Дифракционные эффекты наблюдались до значений 5=9 А 1 для аргона и S = 8 А для ксенона. Положение максиму MOB интенсивности и вычисленные по ним кра1чайшие межатомные рас стояния Ri и средние числа ближайших соседей приведены в табл 15. Там же указаны значения энергии парного взаимодействия атомов Экспериментальные кривые атомного распределения были соиоставле ны с теоретическими, рассчитанными методом идеальных пиков  [c.159]

    Последняя особенность делает метод идеальным для определения низких содержаний тиоцианата, несмотря на то, что промежуточная природа продукта подразумевает, что он быстро образуется, а затем постепешю исчезает со временем жизни порядка Юс. Важно, следовательно, чтобы отсчет снимали в точке, где развитие окраски максимально. [c.454]

    Константа т этой зависимости должна быть определена опытным путем в зависпмостп от состава смеси и условий. Этот путь трудоемок, а поэтому разработаны теоретические и эмпирические методы, которые позволяют рассчитывать равновесное состояние системы. К таким системам относятся прежде всего идеальные растворы, подчиняющиеся законам Рауля п Дальтона. Если система отклоняется от идеально , то это отклонение возможно учесть при но. мощи коэффициента активности у- [c.8]

    Много усилий было затрачено на то, чтобы приспособить КРЭ для непрерывного анализа перемешиваемых или протекающих растворов [30]. Вибрирующий капающий ртутный электрод, описанный Коннери и Ковером [13], и рассмотренные выше электроды с короткими регулируемыми периодами капания успешно применяют в анализе перемешиваемых растворов. Однако получение коротких периодов капания путем вибрации или периодических механических ударов по электроду исключает герметичность системы. Мортко и Ковер [31, 32] сконструировали устройство для вращения капающего ртутного электрода с частотой до 7000 оборот/мин и получения коротких периодов капания. Они установили, что предельные токи восстановления кадмия в 0,1 М растворе КНОз не зависят от скорости протекания раствора в интервале 0,001—0,5 л/мин при частоте вращения 7000 оборот/мин с использованием специальной ячейки. В условиях классической постояннотоковой полярографии в протекающих растворах сигнал искажается конвективными потоками, так что этот метод не годится для непрерывного контроля растворов, которые могут быть и неподвижными, и сильно турбулентными в разных точках и в разные моменты времени. Кроме того, короткие периоды капания вращающегося КРЭ позволяют устранить или сильно ослабить кинетические и адсорбционные эффекты, и это в сочетании с нечувствительностью к случайным конвективным токам, возникающим от движения раствора, делает метод идеальным для непрерывного анализа протекающих растворов. [c.332]

    Титриметрические определения являются, вероятно, наиболее широко применяемыми из всех обычных методов анализа. Конечно, эти методы зависят от использования подходящих индикаторов или детекторов точки эквивалентности. Электрохимические методы повышают чувствительность и надежность определения конечной точки, что позволяет титровать много меньшие количества вещества. Более того, эти методы идеально подходят для операций с малыми объемами аналитиками разработаны миниатюрные ячейки и электроды, которые делают титрования в объеме микролитров такими же точными, как и определение макроколичеств вещества. Несмотря на то что эти методы не являются истинно электрохимическими, их успех так тесно связан с электрохимией, что краткое обсун дение их развития за последние годы, особенно в методическом отношении, будет не лишним в этой главе. [c.310]

    Требование, чтобы точка отбора проб была удалена на достаточное расстояние , очень важное. Ирактическая трудность применения методов с использованием индикатора заключается в необходимости достижения однородности распределения индикатора и мгновенного перемешивания его но всему поперечному сечению потока в точке ввода. Если же перемешнБа11ие не является идеальным, выравнивание происходит за счет турбулентной и молекулярной диффузии. В результате этого на некотором расстоянии I от точки ввода индикатор оказывается распределенным равномерно. Иоэтому, если отбор проб для определения концентрации индикатора делать на расстоянии, много большем I, то ошибка при пспользованип уравнения (3.39) будет не очень велика. [c.98]

    Две интересные работы были проведены сотрудниками лаборатории Шелла. В первой из них изучали перемешивание твердых частиц путем добавления в слой меченых (радиоактивным изотопом) зерен катализатора и отбора проб через определеннее интервалы времени из различных точек слоя. Были исследованы три промышленные установки каталитического крекинга. Распределения времени пребывания, найденные описанным методом, говорят о том, что псевдоожиженные слои в регенераторах и реакторах непрерывного действия приближаются по рабочему режиму к системе полного перемехнивания. Наблюдаемые отклонения от этого режима обусловлены наличием байпасов, малоподвижных -зон катализатора, участков с идеальным вытеснением или сочетанием перечисленных факторов. [c.259]

    Из изложенного выше ясно, что для аппарата идеального перемешивания возможно три стационарных режима, из них два (при низкой и высокой температурах) устойчивы, а один (при промежуточной температуре) неустойчив. Действительно, проверка условий (У.26) отрицательности вещественной части корней характеристического уравнения приводит к условию dQJdt dQjdT (Ql и Q2 — те же, что и на стр. 158), т. е. наклон линии отводи-мого тепла в устойчивой точке должен быть больше наклона линии подводимого тепла. Вообще исследование устойчивости в таких аппаратах не вызывает затруднений при использовании методов, описанных выше (стр. 160, 163). [c.167]


Смотреть страницы где упоминается термин Метод идеальной точки: [c.193]    [c.141]    [c.184]    [c.89]    [c.141]    [c.109]    [c.109]    [c.82]    [c.41]    [c.141]    [c.118]    [c.15]   
Методы и модели планирования нефтеперерабатывающих производств в условиях неполной информации (1987) -- [ c.193 ]




ПОИСК







© 2025 chem21.info Реклама на сайте