Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изотермический

    Эквивалентная изотермическая температура определяется по следующему уравпепию  [c.270]

    Изобарно-изотермический потенциал, который зависит лишь от одного легко определяемого на опыте параметра экстенсивности — числа молей (молекул, массы), наиболее широко применяется при проведении расчетов, в том числе и электрохимических. [c.18]


    Нужно ли подводить или отводить тепло от газа при изотермическом сжатии  [c.42]

    Типичным примером кожухотрубчатого реактора с внутренним теплообменом, работающего нри условиях, близких к изотермическим, является реактор для селективной полимеризации олефинов (рис. 140). [c.276]

    Частицы Ох, присоединив п электронов, превратились в частицы Red, находящиеся в плотной части двойного слоя (рис. 17.1, в). В соответствии с этим стандартный изобарно-изотермический потенциал G°iv определяется уравнением [c.355]

    Температура, эквивалентная средней скорости неизотермического процесса, это та температура, при которой может быть достигнута та же скорость процесса в изотермических условиях. [c.270]

    Изотермический процесс, когда скорость отвода или подвода тепла пропорциональна его выделению или поглощению в процессе реакции. Реакции, протекающие изотермически, характеризуются постоянством температуры по всему реакционному объему. [c.263]

    Изотермический процесс осущастгзляется в технологических установках при постоянной температуре, а такке имеет место в идеальном компрессоре при сжатии. [c.16]

    Уравнения (302)—(309) справедливы при изотермическом течении процесса. [c.270]

    Согласно определению, данному электрохимическим системам, в них происходит взаимное превращение энергии химических реакций и электрической энергии. Пусть з электрохимической системе обратимо и изотермически совершается химическое превращение VA А + Vв В +. .. = -Ь + УМ +. .. (47) [c.19]

    При расчете изотермического процесса однократной перегонки нефтяных смесей в присутствии перегретого водяного пара или другого инертного агента, полностью переходящего в паровую фазу, используют также уравнение (1.13), однако при этом необхо- [c.64]

    Если предположит ), что все стадии цикла протекают обратимо и изотермически, и применить к нему закон Гесса, то [c.48]

    Если между металлом и растворителем существует электрохимическое равновесие, то работа переноса иона из одной фазы (в данном случае из раствора) в другую (в металл), которой заканчивается цикл, будет равна нулю. При обратимом и изотермическом проведении цикла суммирование дает в согласии с законом Гесса [c.63]

    В наиболее общем случае диффузионный потенциал возникает в месте контакта двух растворов I и II, отличающихся друг от друга и качественно, и количественно (рис. 6.2). На границе этих растворов имеется некоторый переходный слой, где состав меняется от раствора I до раствора II и от раствора II до раствора, I. В этом же переходном слое локализуется и диффузионный потенциал. Строение переходного слоя, а также закон, по которому в нем происходит изменение состава, неизвестны. Однако можно утверждать, что если внутри его мысленно вырезать элементарный слой толщиной dx с границами АА и ВВ и предположить, что слева от границы АА активности присутствующих частиц будут а, а , а и аи, то справа от границы ВВ оии будут отличаться от этих значений на бесконечно малые величины. Если через выбранную систему обратимо и изотермически перенести 1 фарадей электричества, то в результате перемещения ионов изменится состав системы и, как следствие этого, ее изобарно-изотермический потенциал. Пусть его изменение отвечает величине dG, которую можно выра-> зить через химические потенциалы  [c.149]


    Через дифференциалы характеристических функций можно находить условия равновесия, определять свойства системы и т. д. Применительно к большинству физико-химических и электрохимических явлений наиболее важными и часто используемыми функциями являются изохорно-изотермический и изобарно-изотермический потенциалы, поскольку их изменение связано с изменениями температуры, объема и давлеппя, т. е. легко регулируемыми и измеряемыми свойствами системы. [c.15]

    Если в электрохимической системе обратимо и изотермически протекает реакция [c.154]

    Стандартные потенциалы отнесены к 25° С, их значения ири других температурах могут быть найдены по соответствующим изотермическим температурным коэффициентам, также приведенным в табл. 8.1. Изотермические коэффициенты отвечают реакции [c.178]

Таблица 8.1. Стандартные электродные потенциалы при 25 и их изотермические температурные коэффициенты Таблица 8.1. <a href="/info/2865">Стандартные электродные</a> потенциалы при 25 и их <a href="/info/602860">изотермические температурные</a> коэффициенты
    Из уравнений ( 2 ) и ( 3 ) получаем уравненио первого начала для изотермического процесса  [c.16]

    К изотермическим системам принадлежат реакторы установок для получения изооктапа (полимеризация и гидрирование), к ним приближаются реакторы алкилирующих установок, реакторы с псевдо-ожиженпым слоем катализатора и некоторые другие. [c.263]

    При обработке опытных данных или результатов обследования реакторов, состоящих из ряда секций, нескольких аппаратов либо разбитых на ряд участков, возникает необходимость опредоления эквивалентной изотермической температуры всего процесса в делом, т. е. температуры, отвечающей изотермическому течению процесса в тех же условиях. [c.270]

    В кипящем слое реакция протекает в изотермических условиях благодаря мгновенному выравниванию температуры, интенсифицируются процессы массопередачи и теплонередачи и упрощается аппаратурное оформление процесса. [c.273]

    Для изобарно-изотермического потенциала системы с химической реакцией по аналогии с (28) и при учете соотношения (30), можно наиисать [c.18]

    Зная изотермический температурный коэффициент потенциала и термический температурный коэффициент стандартного водородного э.иектрода, можно найти значение термического температурного коэффициента любого электрода [c.181]

    Из (39) и (40) следует, что лробая забота системы, отличная от работы расширения, отвечает измеЕ ению характеристической функции при постоянстве соответствующих параметров. Так, при постоянных Т м V она равна уменьшению изохорно-изотермического потенциала [c.19]

    Для характеристики термодинамической устойчивостн электрохимических систем в водных средах весьма удобны диаграммы потенциал— отрицательный логарифм активности водородных ионов (диаграммы ё — pH), получив1иие широкое применение главным образом благодаря работам Пурбе и его школы. Для построения таких диаграмм, часто называемых диаграммами Пурбе, необходимо располагать сведениями об основных реакциях (окисления и восстановления, комплексообразования и осаждения), возможных в данной системе, об их количественных характеристиках (изобарно-изотермических потенциалах, произведениях растворимости и т. д.) и передать их графически в координатах S — pH. Для водных сред, естественно, наиболее важной диаграммой — pH следует считать диаграмму электрохимического равновесия воды. [c.186]

    Здесь АО Л , — энергия образования хлорида натрия из элементарных натрия и хлора, взятых в их стандартных состояниях (твердый кристаллический натрий и газообразный моле кулярный хлор), равная 384 кДж.моль- ЛОсуб = 78 кДж-моль — энергия сублимации натрия АО оп=496 кДж-моль —энергия его ионизации А0дие=203 кДж-моль — энергия диссоциации молекулярного хлора Л(5ср=387 кДж-моль —эне )гия, характеризующая сродство электрона к газообразному атомарному хлору. Если цикл проведен обратимо и изотермически, то полное изменение энергии равно нулю, что приводит к уравнению, позволяющему найти энергию решетки  [c.45]

    Если известны изотермические температурные коэффициенты, то стандартньи потенциал любого электрода при температуре I, от-лн ПГ01"[ ог 25° С, можно рассчитать по уравнению [c.181]

    В спязп с тем, что вторые изотермические температурные коэффициенты известны для огранпченпого числа электродов, расчет проводят обычно по приближенному уравнен .К) с учетом лшш. первого 1 эотерм ческого коэффициента  [c.181]

    Второй принцип находится в согласии с вероятным механизмом возникновения равновесного скачка потенциала на границе металл — раствор, хотя обмен ионами не исчерпывает всех возможных п )ичин, приводящих к образованию скачка потенциала на этой границе. Если между электродом и раствором существует равновесие, то электродный потенциал будет мерой изменения изобарно-изотермического нотенциала G соответствующей электродной реакции. При заданной электродной реакции электродный нэтенциал должен быть определенной и постоянной величиной. Как показывает уравнение для электродного нотенциала [c.217]


    Первое предположение о причинах данного явления сводится к тому, что различие между обратимой э.д.с. и напряжением возникает как результат омических потерь напряжения. В этом случае напряжение, необходимое для проведения какой-либо реакции в электролитической ванне, будет слагаться из обратимой э.д.с. Е (определяемой изменением изобарно-изотермического потенциала) и падения напряжения в электролите и в электродах Еом (зависящего от плотности тока). Такое предположение объясняет причину увеличения напряжения на аание при прохождении через нее тока по сравнению с обратимой э.д.с. той же системы. Точно так же уменьшение напряжения гальванического элемента при отборе от него тока можно отнести за счет того, что часть э.д.с. расходуется на преодоление сопротивления в утри самого элемента. Омические потери напряжения являются, таким образом, одной из причин различия между обратимой э.д.с. и рабочим напряжением. Опыт показывает, однако, чго [c.287]

    Частицы Ох, пройдя падечие потенциала il i, размещаются в плотной части двойного слоя рэакция еще ие произошла, п электронов по-ирежнему находятся в металле. Изобарно-изотермический потенциал второго этапа (рис, 17.1, б) определяется поэтому [c.354]

    Частицы Red вышлп за пределы двойного слоя (рис. 17.1, г). Стандартный изобарно-изотермический потенциал равен хи- [c.355]

    Величину А0° пока рассчитать не удается, поэтому для нахождения величин АОо и АОо делаются более или менее иравдоподобпые предположения. Так, поскольку изобарно-изотермический потенциал в общем случае равен сумме электрохимических потенциалов всех частиц с соответствующими стехиометрическими коэффициентами [c.356]

    Можно предположить (как это делают Парсонс и Далахей), что разность электрических слагаемых изобарно-изотермических потенциалов в переходном и втором состояниях представляет собой некоторую долю а (0 о 1) от разности электрических слагаемых изобарно-изотермических потенциалов в четвертом и втором состояниях  [c.357]

    Кр можно рассчитать через нормальное химическое сродство АОг= — НТ 1п Кр или АР°г = — RT n Кс, где АС]- и АГт — свободные энергии при постоянных давлении и объеме или изобарно- и изохорио-изотермические потенциалы соответственно. [c.93]

    Рассмотрим систему, состоящую из химических веществ Aj, между которыми могут происходить реакции типа oi.jAj = 0. Пусть температура и давление поддерживаются постоянными. Состояние системы будет самопроизвольно изменяться в сторону общего увеличения энтропии до тех пор, пока не будет достигнуто равновесие и дальнейший прирост энтропии станет невозможным. Если при бесконечно малом изотермическом изменении состояния системы должно быть поглощено количество тепла dq, а прирост энтропии в системе равен dS, то общее изменение энтропии системы и термостата составляет dS — dqlT. Однако [c.47]


Смотреть страницы где упоминается термин Изотермический: [c.5]    [c.5]    [c.16]    [c.17]    [c.23]    [c.5]    [c.5]    [c.14]    [c.19]    [c.154]    [c.332]    [c.357]    [c.44]   
Термодинамика многокомпонентных систем (1969) -- [ c.19 ]

Учебник физической химии (0) -- [ c.105 ]




ПОИСК







© 2025 chem21.info Реклама на сайте