Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярный ион водорода энергия диссоциации

    Молекулы водорода отличаются большой прочностью и малой поляризуемостью, незначительными размерами и малой массой, а следовательно, и большой подвижностью. Поэтому у водорода очень низкие температуры плавления (—259,1°С) и кипения (—252,6°С) он уступает в этом отношении лишь гелию. По тем же причинам он очень незначительно растворяется в воде и органических растворителях. У твердого водорода гексагональная молекулярная решетка. Вследствие высокой энергии диссоциации (435 кДж/моль) распад молекул [c.273]


    Ниже приведены энергии диссоциации (в кДж/моль) двухатомных молекул водорода и элементов I и VII групп и их молекулярных ионов  [c.47]

    Посредством выбранной волновой функции была вычислена наименьшая потенциальная энергия, соответствующая энергии диссоциации, она равна 1,76 эв. Было вычислено, что равновесное расстояние между ядрами равно 1,32 А. На опыте найдено, что энергия диссоциации равна 2,791 эв, а равновесное расстояние — 1,06 А. Таким образом, расчеты показывают, что молекулярный ион водорода—устойчивая частица, но они показывают также, что принятая волновая функция должна быть исправлена. [c.152]

    К первичным фотохимическим процессам -близки так называемые сенсибилизированные реакции, в которых участвуют не те молекулы, которые непосредственно поглощают лучистую энергию, а соседние молекулы, которые сами по себе нечувствительны к излучению данной частоты и получают энергию от непосредственно поглощающих ее молекул. Примером такого процесса является уже рассмотренная нами диссоциация молекулярного водорода в присутствии паров ртути, атомы которой поглощают свет, соответствующий резонансной линии ртути с длиной волны Я = 2536,7 А. В настоящее время известно большое число сенсибилизированных реакций. Кроме паров ртути, сенсибилизаторами могут быть галогены, хлорофилл, ионы железа и др. [c.237]

    Dhj — свободная энергия диссоциации молекулярного водорода  [c.132]

    Молекула водорода представляет собой пример простейшей молекулы, состоящей из двух атомов, связанных ковалентной связью. Вследствие большой прочности и высокой энергии диссоциации распад молекул водорода на атомы происходит в заметной степени лишь при температуре 2500 (степень термической диссоциации 0,0013). А при температуре 5000 " С молекулярный водород почти сполна диссоциирован на атомы (степень диссоциации равна 0,95). Интересно, что для молекулы дейтерия О. энергия диссоциации несколько больше и равна 439,56 кДж/моль при практически равных межатомных расстояниях в Из и Ог (0,07414 и 0,07417 нм соответственно). Быть может, это редкий случай, когда гравитационные силы (из-за большей массы дейтерия) оказывают влияние на прочность химической связи. [c.99]

    Прямая рекомбинация молекулярного водорода с атомом кислорода на третьем теле с образованием Н О — это очень тяжелый процесс, причем основные затруднения имеют скорее пространственный (стерический фактор порядка 10- 10- ), чем энергетический характер. В то же время обратная реакция (диссоциация Н О на О и Hg) затруднена в основном энергетически, и теплота реакции практически целиком равна энергии диссоциации, будучи при этом чуть выше энергии диссоциации конкурирующей реакции 8 . Данные по экспериментальному и теоретическому определению значений кгв полностью отсутствуют, что в значительной степени объясняется почти единодушным мнением в том, что реакция 26 не играет важной роли в механизме окисления. Расчет значений /с = /(Т, М) по формулам (4.10), (4.11) не приводит к удовлетворительным результатам вследствие тех же причин, что и при расчете kjo, кгз- При экспериментальном определении Age следует учитывать два обстоятельства во-первых, наличие конкурирующей реакции 4 и, во-вторых, что имеется по крайней мере 4 линейные комбинации более быстрых маршрутов 13 10, 23 - 28, 2 -> 24, 21 29, сильно маскирующих основную медленную стадию 26. Из численного моделирования следует, что нигде термодинамическая доля 26 не выше предельных значений 0,01—0,02, что подтверждает справедливость предположения о ее незначительности. [c.291]


    Определите константу равновесия Кр реакции диссоциации молекулярного водорода при Т = 5000 К, используя молекулярные постоянные молекулы Hg со = 4396, 55 m S / = 0,459-10- кг-м. Энергия диссоциации при Т = О равна D = 431,9 кДж/моль. Основное электронное состояние молекулы Hj и атомов Н невырожденное, число симметрии для Hj равно а = 2. [c.275]

    Взаимодействие водорода и других восстановителей с отдельными видами твердых топлив протекает с различной интенсивностью в зависимости от реакционной способности органической массы углей. Большое значение имеет также форма, в которой водород взаимодействует с твердым топливом, и условия проведения гидрогенизации. В отличие от молекулярного кислорода, действие которого было рассмотрено, молекулярный водород при нормальных условиях практически не реагирует ни с одним видом твердого топлива, хотя и сорбируется им. Отсутствие взаимодействия в этом случае объясняется значительно большей энергией диссоциации Нг (432,4 кДж/моль) по сравнению с энергией диссоциации Ог (146,2 кДж/моль). Атомарный водород обладает высокой химической активностью в момент его выделения при различных реакциях. [c.175]

    Атомарный и молекулярный водород. Давно известно, что реакционная способность водорода резко повышается, если использовать его в момент выделения. В этом случае химически реагируют не молекулы, а атомы водорода. Атомарный водород уже при комнатной температуре восстанавливает перманганат калия, реагирует с кислородом, многими металлами и неметаллами. Атомарный водород можно получить не только термической диссоциацией молекулярного или при химических реакциях, но также действием тихого электрического разряда или ультрафиолетового излучения на обычный водород. Атомарный водород может сохраняться неограниченное время в условиях малой вероятности столкновений атомов со стенками сосуда, в отсутствие примесей. При столкновении двух атомов водорода возникают неустойчивые частицы, имеющие избыточную энергию, выделившуюся при образовании химической связи. Эти неустойчивые частицы мгновенно распадаются вновь с образованием атомов водорода. Молекулы водорода образуются из атомов при так называемых тройных соударениях, когда третья частица уносит с собой избыток энергии. Роль такой третьей частицы могут играть молекулы водорода, примеси и стенки сосуда. Практически промежуток времени, в течение которого половинное число атомов соединяется в молекулы, равен >/з с. При образовании молекул водорода из атомов (рекомбинация) выделяется столько энергии, сколько поглощается при диссоциации, т.е. 436 кДж/моль. [c.294]

    Активные частицы, образовавшиеся в первичных процессах, могут вступать в химическое взаимодействие с обычными молекулами. Они, очевидно, могут и дезактивироваться, отдавая избыточную энергию путем излучения или превращения ее в теплоту. Активная частица может передавать свою энергию молекуле другого вещества, а та затем вступать в химическую реакцию. Примером такого процесса, называемого сенсибилизацией, является диссоциация молекулярного водорода Б присутствии паров ртути  [c.256]

    Энергия диссоциации молекулярного азота несравненно больше, чем у галогенов (см. табл. 15), чем у водорода (104 ккал/моль), чем у кислорода (119 ккал/моль). Именно высокая прочность молекулы азота и объясняет его малую химическую активность. Так, например, -при комнатной температуре азот реагирует только с литием, образуя нитрид лития  [c.299]

    Молекула водорода представляет собой пример простейшей молекулы, состоящей из двух атомов, связанных ковалентной связью. Вследствие болыпой прочности и высокой энергии диссоциации распад молекул водорода на атомы происходит в заметной степени лишь при 2500°С (степень термической диссоциации 0,0013). А при 5000°С молекулярный водород почти полностью диссоциирован на атомы (степень диссоциации равна 0,95). Интересно, что для молекулы дейтерия Вг энергия диссоциации несколько больше и равна 439,56 кДж/моль при практически равных межатомных расстояниях в Нг и Вг (0,07414 и 0,07417 нм соответственно). [c.294]

    Вначале на поверхности соприкосновения металла с водородом за счет термической диссоциации молекулярный водород превращается в атомарный". При постоянной температуре, в соответствии с законом действующих масс, упругость атомарного водорода увеличивается пропорционально квадрату давления. Так как скорость диффузии водорода в металле пропорциональна квадрату давления, то это подтверждает представление о том, что при отсутствии растрескивания только атомарный водород насыщает сталь. Водород диффундирует в сталь как по границам зерен, так и через зерна. Проникновение водорода происходит одновременно с частичной абсорбцией газа металлом. Водород, растворенный в стали, стремится концентрироваться в зонах с максимальной свободной энергией, по границам зерен, во всех несовершенствах кристаллической решетки и т.д. [c.163]


    Обычно оба электрона в молекуле водорода занимают связывающую молекулярную орбиталь и их спины антипа-раллельны (т.е. принцип Паули применим не только к атомам, но и к молекулам). Если молекулярный водород облучить светом далекой ультрафиолетовой области, то молекула может поглотить свет и один из двух электронов будет промотироваться на разрыхляющую орбиталь (ст ). В первом приближении энергия электрона на разрыхляющей орь битали компенсирует эффект электрона на связывающей орбитали (а) и атомы разлетятся друг от друга. Подобная диссоциация молекулярного водорода не имеет практической ценности, но она очень важна для диссоциации других молекул (например, молекулярного хлора и молекулярного брома, которые легко диссоциируют при облучении). Энергетические уровни молекулы водорода можно представить диаграммой (рис. 1.4), согласно которой две атомные 18-ор-битали рекомбинируют с образованием молекулярных орбиталей-одной связывающей а и одной разрыхляющей а.  [c.14]

    Язык современной химии широко развивается с начала XX ст. и со времени формулировки атомной теории. Современное понимание структуры молекул и их реакционной способности основано на анализе распределения электронов в молекулах, изменений распределения в ходе химических процессов и энергий, связанных с этим распределением. В 20-е годы современная квантовая теория впервые дала основу для количественного описания свойств молекул. Однако вплоть до 60-х годов нельзя было сказать, что расчеты уровней энергии молекулярных электронов, основанные на этой теории, опробованы строгим сопоставлением с экспериментальными данными. Такая возможность появилась в результате совпадения (в пределах ошибок эксперимента) вычисленных и измеренных значений энергии диссоциации молекулы водорода. [c.8]

    Наряду с совершенствованием топлив, при применении которых энергия выделяется в результате окисления (сгорания), исследователи ряда стран заняты проблелюй использования качественно новых источников энергии для авиационных двигателей. В частности, ведутся работы по использованию энергии свободных радикалов. Свободными радикалами называются осколки молекул — группы aтo юв или отдельные атомы, обладающие свободной валентностью. Известно, что диссоциация (распад) молекул на свободные радикалы происходит, как правило, со значительным поглощением энергии извне. При ассоциации Соединении) свободных радикалов в молекулы эта энергия выделяется. Например, для диссоциации 1 кг молекулярного водорода на атомы Нг->И + Н необходимо-за- [c.94]

    Определите константу равновесия/Ся реакции диссоциации молекулярного водорода при Т = 5000 К, используя молекулярные постоянные молекулы Нг 0) = 4396, 55 см" , /<, = 0,459-10" кг-м. Энергия диссоциации при 7 = 0 равна О = 431,9 кДж/моль. Основное электронное состояние молекулы Нг и атомов Н невырожденное, число симметрии для Нг равно ст = 2. [c.275]

    Задача о достаточно проста и может быть численно решена до любой степени точности как в приближении Борна — Оппенгеймера, так и без него. (Разумеется, использование этого приближения упрощает расчет.) Полная энергия основного состояния Н+, вычисленная в приближении Борна —Оппенгеймера, при равновесном межъядерном расстоянии 2,0 ат. ед. равна —0,6026342 ат. ед. При диссоциации Н+ образуются атом водорода и ион водорода. Ион водорода представляет собой оголенный протон, так что, согласно нашему условию относительно отсчета энергии, при котором нулевая энергия соответствует изолированным частицам, находящимся на бесконечно большом расстоянии друг от друга, энергия атома водорода и нона водорода при таком расстоянии между ними должна в точности совпадать с энергией атома водорода, равной —0,5 ат. ед. Следовательно, вычисленная энергия диссоциации составляет 0,10263 ат. ед. Эту энергию диссоциации обозначают символом Ве. Она соответствует указанному выше фиксированному межъядерному расстоянию и не учитывает энергии нулевых колебаний. Поправку на энергию нулевых колебаний можно ввести в результат, полученный в приближении Борна — Оппенгеймера, следующим образом вычислить энергию при нескольких межъядерных расстояниях вблизи равновесного значения, рассматривая энергию как функцию смещения, а затем получить из этой функции силовую постоянную, по которой можно вычислить энергию нулевых колебаний. После введения такой поправки энергия диссоциации молекулярного иона водорода, обозначаемая в этом случае символом Ой, оказывается равной 0,09748 ат. ед. [c.195]

    Как 11 в случае молекулярного иона водорода, численные результаты для молекулы водорода можно улучшить, вводя эффективный заряд ядра который играет роль вариационного параметра. Оптимизируя энергию по отношению к при каждом межъядерном расстоянии, мы найдем минимум энергии при расстоянии 1,38 ат. ед., которому соответствует полная энергия —1,128 ат. ед. и энергия диссоциации 0,128 ат. ед. Оптимальное значение при указанном равновесном расстоянии равно 1,197. Вычисленное межъядерное расстояние лишь на [c.214]

    Возбужденные молекулы, образующиеся при поглощении излучения, могут терять энергию при столкновениях с другими молекулами, возбуждая таким путем химические реакции. В этих случаях возбужденные молекулы выполняют, как говорят, роль сенсибилизаторов. Так, возбужденные атомы ртути вызывают диссоциацию молекулярного водорода, возбуждая некоторые реакции гидрогенизации. Атомы ртути не исчезают навсегда из системы. Аналогичные взаимодействия должны происходить также между двухатомными молекулами с повышенной энергией и многоатомными молекулами, хотя экспериментальные данные, полученные для таких систем, значительно труднее поддаются интерпретации. [c.219]

    Активность водорода. Для синтеза большинства гидридов применяется молекулярный водород, получаемый указанными методами. Однако для некоторых относительно инертных металлов применяется активный водород в атомарном виде, где при реакции гидрирования не требуется затрат энергии на диссоциацию очень прочной молекулы водорода. Некоторые гидриды, такие как гидриды золота и серебра, получают только действием атомарного водорода. [c.11]

    Наиболее важной химической характеристикой молекулы ф тористого водорода является необычная прочность связи водорода со фтором. Энергия диссоциации 1 моля на атомы сосгав-ляет 140 ккал. Фтористый водород чрезвычайно реакционноспособен, 0 Н легко полимеризуется и дает молекулярные соединения со многими веществами. [c.19]

    Для водорода и кислорода на металлах принималась адсорбция с диссоциацией молекул. Значение теплоты адсорбции для них принималось равным половине суммы измеренной молекулярной теплоты адсорбции и энергии диссоциации. Значения т выбирались так, чтобы получить наилучшую корреляцию данных. Эта величина характеризует легкость миграции молекулы по отношению к прочности связи. При постоянном д КТ большие значения т соответствуют и большим значениям [c.58]

    Рассмотрим особенности метода МО ЛКАО на примере молекулярного иона Нз , самой простой из двухатомньЬс молекул. Молекула Нз — молекулярный ион водорода образуется в разрядных трубках, наполненных водородом, в низкотемпературной плазме. Это устойчивая с физической точки зрения частица. Исследование спектра позволило определить ее основные параметры межъядерное расстояние гДН/) = = 1,0610" ° м (1,06 А) и энергию диссоциации /)о(Н2 )=255,96 кДж (2,65 эВ). Молекула Н парамагнитна. Так как молекула Н содержит один-единственный электрон, волновая функция и дозволенные энергетические уровни (энергетический спектр) могут быть найдены при решении уравнения Шредингера. Точное решение достаточно сложное, чтобы его приводить здесь, дает значения г, и Д, совпадающие с опытом. Это показывает, что принципиально уравнение Шредингера применимо для описания поведения электрона не только в атомах, но и в молекулах. [c.92]

    Заряды на атомах кислорода (—0,59 и —0,67) и электронная заселенность О—0-связи (0,38) незначительно меняются в зависимости от строения алкильного радикала, но введение заместителя в R оказывает большее влияние [81, 82]. Нижняя вакантная молекулярная орбиталь (НВО) проявляет разрыхляющий характер по отношению к 0 — 0-связи (имеет узел в области между атомами кислорода), в то время как верхняя занятая молекулярная орбиталь (ВЗО) меет несвязывающий характер и близка по характеру к кислородной атомной орбитали с неподеленной электронной парой. Склонность гидропероксида взаимодействовать по О—О-группе с нуклеофильными реагентами определяется энергетическим уровнем НВО молекулы гидропероксида (чем он ниже, тем меньше энергия активации процесса). Способность гидропероксида реагировать с электрофильными реагентами зависит от энергетического уровня ВЗО (чем он выше, тем легче протекает реакция). Энергия диссоциации для гидропероксида по связи 0 — 0 меньше, чем для пероксида водорода (200,5 кДж/моль) и составляет для гидропероксидов метила и этила 181,6 кДж/моль и для mpem-бутилгидропероксида 184,1 кДж/моль [58]. Такое незначительное изменение энергии диссоциации согласуется с небольшим изменением заселенности О—О-свяаи Ро—Ро (0,343—0,346) [82]. [c.223]

Рис. 9.2. Молекулярный ион водорода зависимость электронной энергии (-) и энергии отталкивания протонов ( — —) от межъядерного расстояния г для связывающего о-состояния (й), разрыхляющего сг-состояния (б), а также суперпозиции обеих зависимостей (б) (л — равновесное расстояние, —энергия диссоциации). Рис. 9.2. Молекулярный ион <a href="/info/440605">водорода зависимость</a> <a href="/info/3620">электронной энергии</a> (-) и <a href="/info/9110">энергии отталкивания</a> протонов ( — —) от <a href="/info/81524">межъядерного расстояния</a> г для связывающего о-состояния (й), разрыхляющего сг-состояния (б), а также суперпозиции обеих зависимостей (б) (л — <a href="/info/761452">равновесное расстояние</a>, —энергия диссоциации).
    Энергия связи — одна нз основных характеристик химической связи она определяет прочность связи. Чем больше энергия, затрачиваемая на разрыв связи, тем прочнее связь. Так, энергия связи молекулы Нз равна 436 кДж/моль, энергия связи молекулярного моиа водорода Щ составляет 255,7 кДж/моль, а молекулы НР 560 кДж/моль. Очевидно, более прочна связь в НР. Для двухатомных молекул энергия связи равна энергии диссоциации. Для многоатомных молекул с равноценными связями, как, например, для СН4 (4 связи С—Н), средняя энергия связи равна энергии разрушения молекулы на атомы, т. е. 1649 кДж/4=412,25 кДж, где 1649 кДж/моль — энергия распада 1 моль на атомы (энергия ато-мнзации). [c.96]

    Периодичность проявляется и в энергиях диссоциации двухатомных молекул (рис. 125). Если энергия атомизации характеризует прочность связей в криста-лле как высшей форме организации вещества, то энергия диссоциации является аналогичной характеристикой молекулярной формы. Молекулярная форма организации у простых веществ встречается сравнительно редко в стандартных условиях двухатомные молекулы образуют водород, азот, кислород и галогены, а при высоких температурах в этой форме существуют пары щелочных металлов, углерода (выше 3600°С), халькогенов (кроме полония) и пниктогенов (кроме висмута). Таким образом, молекулярная форма в парообразном состоянии наиболее характерна для неметаллов. Большинство же металлов (за исключением щепоч- [c.247]

    В гл. 2 уже говорилось о том, что метан содержит два типа связывающих молекулярных орбиталей тотально симметричную 1/1 и три вырожденные орбитали 1/2, и /4, каждая из которых имеет узловую плоскость. Это не означает, что существует какое-то различие в связывании четырех атомов водорода. Водородные атомы размещены те-траэдрически вокруг центрального атома углерода, и связи имеют равную энергию. Чтобы рассчитать энергию диссоциации связи и другие физические характеристики связей углерод - водород, удобно скомбинировать 2в- и три 2р-орбитали атома углерода, и тогда получатся гибридные орбитали 8р (символ 8р указывает, что гибрид получен из одной 28- и трех 2р-орбиталей). Эти гибридные орбитали углерода перекрываются с Ь-орбиталями четырех атомов водорода, образуя четыре тетраэдрические связи. Гибридизация-это математический прием, позволяющий рассчитать энергию и пространственную ориентацию атомов в молекуле. Если исследовать энергетические уровни в метане, например, методом фотоэлектронной спектроскопии, то в действительности мы обнаружим два энергетических уровня, о чем говорилось в гл. 2. Кроме того, величину константы спин-спинового взаимодействия Н—в спектре ЯМР можно интерпретировать через 5-характер центрального атома углерода. [c.35]

    Молекулярный ион водорода представляет собой простейший пример молекулы, так как он обладает единственным связывающим электроном. Этот ион образуется в электрическом разряде в атмосфере водорода, и его свойства хорошо известны из спектроскопических исследований. Равновесное межъядерное расстояние составляет 1,06 А, а энергия диссоциации равна 2,78 эВ, или 64,10 ккал/моль. Уровни энергии и электронные плотности молекулярного иона водорода можно рассчитать с любой желаемой степенью точности, потому что в этом случае уравнение Шредингера имеет точное решение. Координаты трех рассматриваемых частиц указаны на рис. 14.1. В приближении Борна —Оп-пенгеймера оператор Гамильтона записывается как [c.427]

    В молекулярных кристаллах можно выделить два типа сил внутримолекулярные силы и силы между молекулами. Последними силами как раз являются остаточные связи. Как правило, эти силы намного слабее, чем внутримолекулярные, но в то же время именно ими определяются многие важные физические свойства таких кристаллов (температура плавления, твердость, тепловое расширение и др). Низкие температуры плавления молекулярных кристаллов, их малая твердость и значительное тепловое расширение свидетельствуют о чрезвычайной слабости Ван-дер-Ваальсовых сил по сравнению с силами других типов связи. О сравнительной величине остаточной связи по сравнению с внутримолекулярной можно судить по теплота сублимации молекулярного кристалла и эиергии диссоциации соответствующих молекул (следует, однатш, отметить, что внутримолекулярные силы обычно исследуются у вещества в жидкой или газообразной фазе, но это мало влияет на оценочный результат). Так, у молекулярного водорода в твердой фазе теплота сублимации равна 0,5 ккал1моль, а энергия диссоциация молекулы водорода составляет около 100 ккал1молъ, т. е. намного больше. [c.206]

    На основе данных о кинетике пара-орто-кокверсии разработан метод оценки энергии связи промежуточных поверхностных соединений в каталитических процессах [7, 81. Различие вращательных уровней орто- и пара-модификаций водорода может быть использовано для изучения механизма таких каталитических процессов, при которых не происходит промежуточной диссоциации молекул водорода. Так, если в определенных условиях процесс гидрирования протекает по ударному механизму [9], т. е. через взаимодействие адсорбированных углеводородов непосредственно с молекулярным водородом из газовой фазы, то различные модификации водорода (о- и п-водород) имеют различные скорости гидрирования. Это является подтверждением справедливости ударного механизма гидрирования углеводородов. [c.48]

    Теория дает весьма ограниченную информацию о процессах диссоциативной ионизации. Относительно благополучно здесь обстоит дело для двухатомных молекул. Метод расчета сечения образования осколочных ионов двухатомных молекул с известными потенциальными кривыми при больших энергиях электронов был предложен в работе [1550]. Рассмотрим, например, диссоциативную ионизацию молекулы водорода. На рис. 8 приведены потенциальные кривые для основных электронных состояний молекулы и молекулярного иона. Обозначив ыеждуядерное расстояние, соответствующее потенциальной энергии иона, равной энергии его диссоциации, через Гс и ядерную волновую функцию молекулы нулевого колебательного уровня через о. для вероятности того, что вертикальный переход приведет к колебательному возбуждению иона, превосходящему энергию диссоциации, и следовательно, сможет образоваться осколочный ион, будем иметь [c.369]


Смотреть страницы где упоминается термин Молекулярный ион водорода энергия диссоциации: [c.46]    [c.312]    [c.18]    [c.56]    [c.312]    [c.101]    [c.863]    [c.63]    [c.79]    [c.496]   
Физическая химия (1978) -- [ c.427 ]




ПОИСК





Смотрите так же термины и статьи:

Водород диссоциация

Водород молекулярный

Молекулярный ион водорода энергия

Энергии с водородом

Энергия диссоциации



© 2025 chem21.info Реклама на сайте