Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

связь изменение энтальпии

    Изменение энтропии при фазовых переходах связано с энтальпией перехода и температурой перехода соотношением [c.86]

    Связь между температурой реакции, ее стандартным изменением энтальпии и константой равновесия при этой температуре можно выразить при помощи следующего линейного уравнения  [c.198]


    Это выражение показывает, что изменение энтальпии связано с изменением потенциальной энергии рабочего тела в отсутствие теплообмена его с внешней средой. [c.63]

    Из теории абсолютных скоростей реакций (теории активированного комплекса) следует, что энергия активации реакции Е — АЯ, где ДЯ —разница энтальпий активированного комплекса и реаген тов (реагента). Величина ДЯ может быть выражена через энергии разрыва связей в реагентах и активированном комплексе. В реакции дегидрирования циклопентана разрываются две связи С—Н в молекуле циклопентана и образуются две связи С—Н, я-связь С—С и связь Н—Н в активированном комплексе. Изменение-энтальпии при реакции равно  [c.30]

    Б. С. Гринсфельдером подсчитаны изменения энтальпии двух гипотетических реакций — прямого гомо- и гетеролитического расщепления углерод-углеродной связи в гексане  [c.114]

    Связать изменение энтальпии в системе с теплотой, переходящей при постоянном давлении [уравнение (2.3.7)]. [c.61]

    Изменение свободной энергии можно определить, проводя реакцию в гальваническом элементе. Изменение энтальпии ДЯ рассчитывается по энтальпиям образования веществ, участвующих в реакции, или по виду или типу связей между атомами в молекулах этих веществ. [c.14]

    Нетрудно показать, что для реакций, протекающих при постоянном давлении и те шературе, самопроизвольным является всякий процесс, в результате которого происходит уменьшение свободной энергии. Рассмотрим полную свободную энергию, G, системы веществ в реакционном сосуде изменение свободной энергии этой системы в результате химической реакции связано с изменениями энтальпии и энтропии соотношением [c.68]

    Уравнение Во [68] для симметричных кривых изменения теплоты смешения связано с мольными концентрациями взаимодействующих компонентов. Концентрации в большей мере чем температура и другие параметры системы влияют на изменение энтальпии [c.248]

    Допущение (IV, 22) в известной степени отвечает рассмотренному ранее соотнощению (111,42). Вместе с тем между ними имеются существенные различия. Равенство (111,42) устанавливает связь только между изменением энтальпии двух веществ, а равенство (IV, 22)—между влиянием температуры на изменения этих величин в двух реакциях, причем тепловой эффект каждой из них включает и АЯо(или в общем случае ДЯг, при температуре Ту). [c.139]

    Теплота сгорания в настоящее время и в оригинальных работах, и в справочных изданиях обычно выражается для стандартного состояния исходных веществ и продуктов реакции и относится к 25°С. Теплота сгорания различна в зависимости от условий проведения процесса — при постоянном объеме или при постоянном давлении. В нервом случае она выражает изменение внутренней энергии системы (Дб с = —Qv), а. во втором — изменение энтальпии (дя = -др). При сжигании в калориметрической бомбе по условиям опыта непосредственно определяется величина лис, а затем путем пересчета ДЯс. В оригинальных работах обычно приводят обе величины, в справочных изданиях большей частью только одну из них — ДЯс, так как она непосредственно связана с AH°f. [c.208]


    Связь между э. д. с. электрохимической цепи и изменением энтальпии протекающей в ней реакции устанавливается на основании уравнения Гельмгольца — Гиббса (см. 69)  [c.477]

    К различиям между двумя указанными выше реакциями можно отнести изменение энтальпии высокотемпературный риформинг — эндотермическая реакция, низкотемпературная конверсия — экзотермическая реакция. В связи с этим установки высокотемпературного и низкотемпературного риформинга различаются конструктивно в первом случае реакция протекает в нескольких реакторах с внешним обогревом труб, во втором — внешнего обогрева не требуется п газификация осуществляется в реакторе адиабатического типа, представляющем собой изолированный барабан, заполненный катализатором [4]. [c.94]

    Это очень важный момент, если рассматривать, скажем, изменение энтальпии в процессе гидрогазификации. Как правило, эта реакция протекает с выделением тепла, но получение водорода связано со значительными затратами тепловой энергии. [c.96]

    В большинстве случаев изменение в свободных энергиях (или в константах равновесия) связано с изменениями энтальпии. Роль энтропийного члена более заметна при высоких температурах, а также в реакциях, сопровождающихся значительным изменением строения исходных углеводородов. [c.135]

    Принимая во внимание, что изменение энтальпии газа связано с изменением температуры зависимостью <И = СрШ, получим  [c.327]

    Изменение энтальпии с температурой связано с изменением теплоемкостей ДСр следующим уравнением  [c.15]

    Интегралы I и II, входящие в (1.64), были проверены для различных атомных групп и связей углеводородов их значения даны в приложении 10-6 и 10-в. Величина 4/ (7—298) представляет собой изменение энтальпии с изменением температуры за счет составляющих поступательного движения, внешнего вращения и учитывает разницу Ср — Су = Я. [c.49]

    Энергетический баланс. Этот баланс составляют на основе закона сохранения энергии, согласно которому количество энергии, введенной в процесс, равно количеству выделившейся энергии, т. е. приход энергии равен ее расходу. Проведение химико-технологических процессов обычно связано с затратой различных видов энергии — механической, электрической и др. Эти процессы часто сопровождаются изменением энтальпии системы, в частности, вследствие изменения агрегатного состояния веществ (испарения, конденсации, плавления и т. д.). В химических процессах очень большое значение может иметь тепловой эффект протекающих реакций. [c.16]

    Количественные характеристики и закономерности протекания химических реакций во времени неразрывно связаны с их механизмом. В этом состоит важнейшее отличие временных (кинетических) характеристик химической реакции от термодинамических характеристик — изменения энтальпии, энтропии и изобарного потенциала, константы химического равновесия, не зависящих от пути, по которому протекает химическая реакция. В силу этой неразрывной связи в предисловии к настоящему курсу химическая кинетика определена как учение о механизме химического процесса и закономерностях его протекания во времени. [c.32]

    Изменения энтальпии при сублимации, плавлении и испарении в тройной точке (в равновесии находятся кристаллы, жидкость и пар) связаны соотношением [c.87]

    При рассмотрении химических процессов обычно имеют дело с изменением энтальпии. Для величины дН/д )-р р обычно используют обозначение А Н Т,Р) (или просто Нижний индекс г указывает, что данное изменение энтальпии связано с протеканием реакции. Очень часто при расчетах величин типа А (Т,Р) полагают di, равной 1 моль, но при этом считают, что система настолько велика, что превращение одного моля не изменяет термодинамических параметров системы. Этот прием эквивалентен вычислению производной. Для стандартных величин используется обозначение A T,Pq) = А Т) = А  [c.43]

    Если необходимо провести интегрирование в более широком температурном интервале, то может оказаться, что в этой области температуры происходят фазовые превращения. С последними связано соответствующее изменение энтальпии, которое не учитывается при интегрировании [уравнение (227)]. В таких случаях интегрирование надо проводить в интервале температур, в которых не происходит фазового превращения. [c.230]

    Для решения вопроса о том, растворяется ли данное вещество в определенном растворителе, можно провести термодинамическую оценку. При постоянных температуре и давлении решающим будет изменение свободной энергии Гиббса AG = AH— —TAS, которое учитывает как изменение энтальпии (разрыв и образование связей), так и энтропийные факторы (изменение степени упорядоченности). [c.370]


    Выяснение роли каждой стадии процесса протолиза позволяет дать ответ на причины необычного поведения галогеноводородов. Особое место НР в последовательности этих соединений объясняется относительно низким значением энтальпии Д// и относительно высоким отрицательным значением энтропии Д5 процесса протолиза. Небольшая энтальпия процесса протолиза ДЯ обусловливается относительно высоким значением энтальпии диссоциации молекулы НР и сравнительно небольшой электроотрицательностью атома фтора. Этот эффект несколько снижается за счет высокой энтальпии гидратации иона Р , имеющего малый радиус. Разность изменений энтальпии ДЯ протолиза НС1 и НР (44,8) показывает, что протолиз НР происходит в значительно меньшей степени, чем НС1. Причиной отрицательного изменения энтропии протолиза НР является более сильная связь иона р- с водородом, что приводит к меньшей вероятности его существования в виде гидратированного иона. Это также является причиной относительно небольшой протолитической активности фтороводорода. [c.406]

    Следует отметить, что солюбилизация спиртов, в отличие от углеводородов, характеризуется отрицательным изменением энтальпии. В этом случае наряду с выигрышем энтропии солюбилизации благоприятствует также энергетический фактор. Он обусловлен, по-видимому, специфическим взаимодействием полярных групп солюбилизата и ПАВ (ион-дипольное взаимодействие и образование водородных связей), что дает дополнительный выигрыш свободной энергии [23]. [c.79]

    Подобно внутренней энергии и энтальпии, энтропия зависит только от состояния системы и также является функцией состояния. Но, в отличие от этих двух функций, связь изменения энтропии с теплотой зависит от способа проведения процесса — от его скорости. [c.181]

    Если же процесс проводится обратимо и в изобарных условиях, то, как показано выше, SQ = Н. В этом случае изменение энтропии связано с изменением энтальпии уравнением с15 = Н/Т. [c.182]

    Прочность химической связи в молекулах галогеноводородов закономерно падает в ряду HF — НС1 — НВг — Ш это проявляется в изменении энтальпии диссоциации молекул на атомы (табл. 19.2). Как показывает схема (рис. 19.4), [c.483]

    Изменение энергии Гиббса связано с изменениями энтальпии АН°г и энтропии AS°T реакционной системы следующим соотношением  [c.17]

    При замене обычного растворителя на дейтерированный, например Н2О на ВгО, наблюдают изотопный эффект по растворителю, который носит комплексный характер. Кинетический изотопный эффект характерен для реакций с переносом протона. Он зависит от следующих факторов типа диссоциирующей связи, изменения энтальпии и характера элементарного акта переноса протона (адиабатического или туннельного). При адиабатическом характере реакции изотопный эффект максимален для термонейтральной реакции. Основной вклад в изотопный эффект вносит разность нулевьк энергий Д о валентных колебаний связей А—Н и А—О. Ниже приведены значения кц//со, эффект обусловлен только АЕо для разных типов А—Н-связей (Г= 298 К)  [c.500]

    По второму методу сравнительного расчета сравнивают значения двух свойств в одном ряду веществ. В. П. Шишокин связал изменение Энтальпии АЯ с эквивалентным ионизационным потенциалом /и<в. [c.52]

    В зависимости от типа процесса изменениям энтальпии присваивают название теплоты образования, теплоты сгорания, теплового эффекта химической реакции, энергии связи, высшей или низшей теплоты сгорания, теплоты фазового перехода. Высшей теплотой сгорания называют теплоту, выделяемую при полном сжигании вещества и конденсации водяного пара, образующегося при сжигании углеводорода, при достижении исходной температуры. Если при сжигании углеводородов водяной пар не конденсируется по достижении исходной температуры, то выде- [c.65]

    Таким образом, энергия Гиббса для о-предслеинон массы какого-либо вещества характеризует запас химической энергии в ней. Тогда каждая химическая реакция, характеризуемая определенным энергетическим э( )фектом, т. е. изменением энтальпии, может характеризоваться также изменением энергии Гиббса, значение которого связано со значением энергетического эффекта уравнением [c.87]

    Движун1ая сила процесса растворения, равно как и любого фн-знко-хнмичеекого процесса, выражается уменьшением энергии Гиббса системы. Как известно, изменение эне згии Гиббса связано с изменением энтальпии и энтропии системы следующим равенств ом  [c.161]

    Рассмотрим методы определения энтальпии и энтропии реакции, осйованные на анализе строения конечных и исходных углеводородов. Из этих двух параметров изменение энтальпии гораздо легче и проще поддается непосредственному учету. Для циклических насыщенных углеводородов энтальпия изомеризации определяется двумя показателями а) изменением числа заместителей в кольцах и б) изменением числа скошенных бутановых взаимодействий. (Для углеводородов с циклопентановыми коль-цамр используется изменение числа г ис-вицинальных взаимодействий.) Последние показатели связаны, очевидно, с характером расположения заместителей в кольцах. [c.136]

    Стоимость сухой градирни при фиксированных требованиях к охлаждению намного больше, чем стоимость градирни с контактом воды и воздуха. В [4] приведены значения стоимости сухой градирни, описанной в 121) для турбогенератора мощностью 120 МВт, которая оказалась примерно в 2 раза больше стоимости градирни испарительного типа. Более того, при заданной мощности размеры сухой градирни должны быть больше. Увеличение стоимости частично связано с заменой сравнительно недорогой насадки теплообменниками и, в какой-то степени, с необходимостью использования вытяжной башни большего размера, чем для градирни с прямым контактом при одинаковой мощности. Потребность в большем расходе во -духа связана с тем, что изменение энтальпии воздуха в сухой градирне должно быть меньше, чем в испарительной, где вода испаряется в воздушном потоке. Несложные расчеты показывают, что для охлаждения воды с температуры 32 °С до температуры 20 "С нри Т])уц--= 0 "С и одинаковых расходах воды в сухой гра ирие расход воздуха приблизительно в 3,5 раза выше, чем в испарительной. [c.133]

    Заметим, что в выражении (Х.7) изменение энтальпии АЯ>0, следовательно, это выражение относится, собственно, к эндотермическим реакциям, в которых образование новых молекул, новых химических связей происходит за счет энергии, подводимой извне, например при увеличении давления и при нагревании. При этом энтропийный член уравнения (Х.7) возрастает, и, если температура достаточно велика, то достигается неравенство 7 А5>АЯ. При этом А/ <0, т. е. процесс идет самопроизвольно. Так, реакции восстановления водородом фторидов, бромидов и хлоридов металлов типа ШРб + ЗН2= Ш+6НР являются эндотермическими реакциями. При повышении температуры величина АР для реакции восстановления всех галидов понижается и для многих из них уже при 500 К становится меньше нуля (рис. 48). Благодаря этому уже ниже 300 К наблюдается образование металлического вольфрама на поверхности таких металлов как медь и никель (или ионных кристаллов, вроде флюорита и фторида лития, а также атомных кристаллов типа алмаза) при восстановлении гексафто- [c.148]

    Установим связь между величинами QyVi Орцля реакции, протекающей при постоянном объеме или при постоянном давлении. При постоянном давлении изменение энтальпии определяется выражением [c.44]

    Впервые на существование этой связи в случае неорганических материалов обратил внимание Кауцман. Для органических полимеров позже соответствующую зависимость получил Бимен. Почти одновременно с ним аналогичное соотношение получил Бойер,, который отмечал, что Тс для определенной группы полимеров пропорциональна кинетической энергии движения их сегментов. Так как Тал равна отношению изменения энтальпии АН и энтропии Л5 (зависящей от симметрии и гибкости цепей), можно заключить, что 7 пл и То линейно связаны со свойствами полимеров. Они г.ависят также от времени измерения температуры и от скорости [c.272]

    В таблице 5 (см. приложение) представлены значения изменения энтальпий сублимации АЯма, характеризующие прочность связи между атомами щелочных металлов в их кристаллической решетке М(к)=М(г), и энтальпии плавления АЯгэв М(к)=М(ж). Объясните, пбчему у лития наблюдается максимальное значение всех параметров. [c.159]

    Напомним, что, согласно изложенному в разд. 18.5, изменение свободной энергии АС какого-либо процесса связано с изменениями энтальпии и энтропии, сопровождающими этот процесс, соогношением АС = ДЯ - А5 [c.441]


Смотреть страницы где упоминается термин связь изменение энтальпии: [c.439]    [c.56]    [c.333]    [c.58]    [c.28]    [c.93]   
Современная химия координационных соединений (1963) -- [ c.60 ]




ПОИСК







© 2025 chem21.info Реклама на сайте