Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газы, детектирование

    На рис. 109 приведена схема газо-жидкостного хроматографа. В современных хроматографах можно выделить три основные части. Это системы ввода образцов и подготовки измерения и регулировки газов-носителей. Температурные режимы колонки, детектора и дозирующих устройств обеспечивает система термостатирования и измерения температуры. Получение хроматограмм осуществляется с помощью системы детектирования, в которую кроме детектора входят блок его питания, усилители сигнала, автоматические потенциометры и на современных хроматографах интеграторы и небольшие ЭВМ, управляющие работой прибора и производящие обработку хроматограмм. На рис. ПО приведена типичная хроматограмма смеси углеводородов, полученная с программированным изменением температуры. [c.296]


    Детекторы сечения ионизации. Детектирование газов можно осуществить на основе поглощения ими радиоактивного излучения. Л еханизм процесса, проходящего в камере такого детектора, заполненного водородом в качестве газа-носителя, может быть представлен следующим образом  [c.44]

    Существующие способы детектирования и сами детекторы можно подразделить на дифференциальные и интегральные. Дифференциальные передают мгновенное значение некоторой характеристики, интегральные суммируют количество вещества за определенный промежуток времени. Катарометр, термохимический детектор и ионизационные детекторы относятся к дифференциальным детекторам, а детекторы, основанные на титровании или поглощении газа-носителя,— к интегральным. [c.45]

    Калибровка детекторов. Интенсивность сигнала детектора зависит как от свойств детектируемого соединения, так и от детектирующего устройства. Поэтому в принципе она может быть рассчитана, а следовательно, и положена в основу количественных изме- рений. Однако современное состояние теории детектирования позволяет делать такие расчеты лишь для небольшого числа типов детекторов. Так, например, для детектора по плотности концентрация анализируемого вещества может быть рассчитана по величине сигнала (например, по площади пика), если известна молекулярная масса применяемого газа-носителя. Для детектора по сечению ионизации количество вещества вычисляется по площади пика и сечению ионизации молекул анализируемых соединений и газа-носителя. [c.45]

    История развития газовой хроматографии в известной степени есть история развития детектора. На первом этапе детектирование основывалось на химическом определении суммарного количества вещества (поглощение газа-носителя, титрование и т. д.). [c.44]

    Теплопроводность водорода и гелия примерно в 6—10 раз больше теплопроводности большинства органических соединений. Таким образом, присутствие даже очень небольших количеств органических материалов вызывает относительно большое понижение теплопроводности элюата в результате детектор регистрирует заметное повышение температуры. Теплопроводность азота и углекислого газа более близка к теплопроводности органических соединений таким образом, если носителями служат эти газы, детектирование теплопроводности менее чувствительно. [c.275]

    Дифференциальное детектирование заключается в том, что на выходе из колонки измеряется какое-либо свойство бинарной смеси (газ-носитель — компонент) и сравнивается со свойством чистого газа-носителя. Примером такого детектора является катарометр, в котором сравнивается теплопроводность чистого газа-носителя и газа-носителя в смеси с компонентом. По величине силы тока, измеряемой микроамперметром, можно судить о количественном содержании компонента. Наиболее чувствительными являются ионизационные детекторы. Ионизация молекул в них происходит под влиянием радиоактивного излучения, электрического разряда или пламени. [c.227]


    Метод предназначен для спектроскопических и кинетических исследований химически активных атомов, радикалов и ионов в газовой фазе. В химической кинетике он применяется для изучения элементарных и разветвленных цепных реакций. Метод ЛМР является аналогом метода ЭПР, однако имеет значительно более высокую чувствительность детектирования двухатомных и многоатомных радикалов в газе. [c.357]

    Ультразвуковой детектор. В нем измеряется скорость ультразвука, которая зависит от плотности и состава газа. Поэтому в качестве газа-носителя должны использоваться газы, молекулярные массы которых значительно отличаются от исследуемых соединений. Порог чувствительности Ю —10 моль/с. Детектированию могут подвергаться любые газы. Существенным недостатком этого типа детектора является сложность электрической схемы, а также высокая чувствительность к колебаниям температуры. [c.45]

    В аналитической химии используют три основных метода обнаружения и регистрации излучений а) электрическое детектирование ионизации газов под действием излучения б) измерение светового излучения, возникающего при облучении некоторых веществ в) прямую регистрацию излучений фотографическим методом. Последний из перечисленных методов по существу применяется только для определения характера распределения радиоактивных веществ по поверхности твердых тел, таких, как минералы или биологические объекты. [c.384]

    Категорически запрещается включать его, если через ДТП не проходит газ-носитель. В зависимости от того, какой способ детектирования был выбран, ставят переключатель рода работ 5 в положение ДТП, ДИП или ДТП + ДИП. [c.299]

    Капиллярная хроматография связана с решением более трудных методических задач, чем газо-жидкостная, например с приготовлением капиллярной колонки, дозировкой и детектированием. [c.78]

    Важнейшие типы лабораторных и автоматических газовых хроматографов промышленного изготовления (отечественные и иностранные), их краткая характеристика и области применения. Принципы работы регулирующих хроматографов, Приемы детектирования для решения различных практических задач. Классификация детекторов. Важнейшие характеристики детекторов. Различные типы детекторов. Принцип конструкции, чувствительность, стабильность, инерция, применимость для тех или иных бинарных смесей. Вспомогательные устройства к детекторам. Выбор и методика применения детекторов. Зависимость свойств детекторов от природы детектируемых веществ и газа-носителя. [c.298]

    При интегральном детектировании фиксируется общее количество компонента, поэтому расшифровка хроматограмм не представляет трудностей. Например, содержание кислот в смеси определяют прямым титрованием, а при использовании в качестве газа-носителя двуокиси углерода объемы фракций суммируются в азото-метре (газ-носитель поглощается раствором щелочи). Более чувствительным является дифференциальное детектирование, нашедшее большее распространение, при этом фиксируется лишь изменение некоторого свойства газа-носителя и поэтому не представляется возможным непосредственно судить об объеме фракций в сложной смеси. Поэтому для количественных определений в этом случае необходимо знать зависимость величины отклонений показаний самописца или прибора-индикатора от концентрации компонента в смеси. [c.62]

    Детекторы. Наличие и количественное содержание хроматографируемых веществ в газе-носителе определяют с помощью детекторов, в основу работы которых положены физические или химические методы. Детектор является одним из важнейших узлов хроматографической установки. Существующие способы детектирования подразделяют на дифференциальные и интегральные. Детектор, измеряющий концентрацию раствора в каждый данный момент, называют дифференциальным детектором. Интегральный Детектор непрерывно измеряет суммарное количество пробы, вышедшее из колонки с момента начала анализа. [c.292]

    Детектирование может быть интегральным и дифференциальным. При интегральном детектировании фиксируется общее количество компонентов (например, их общий объем). Вследствие малой чувствительности и инерционности интегральные детекторы применяют крайне редко. Дифференциальное детектирование (более чувствительное) обеспечивает фиксацию концентрации компонентов. Наиболее распространенными детекторами являются ка-тарометры (регистрируют изменение теплопроводности газов по изменению электрического сопротивления проводника), ионизационные детекторы (по току ионизации молекул газа под воздействием пламени или радиоактивного излучения), детекторы плотностн, или плотномеры (по плотности газа), пламенные детекторы (по температуре пламени, в котором сгорает элюат) и др. [c.178]

    Детекторы. Наличие и количественное определение содержания фракций в газе-носителе определяют с помощью различных приборов-детекторов. Существующие способы детектирования подразделяются на дифференциальные и интегральные. Детектор, измеряющий мгновенные концентрации, называется дифференциальным детектором. Интегральный детектор непрерывно измеряет суммарное количество пробы, вышедшее из колонки с момента начала анализа. [c.59]


    Инерционность детектора является следствием ограниченной скорости физических или физико-химических процессов, определяющих механизм детектирования. Так, относительно большая инерционность детектора по теплопроводности определяется скоростью процесса теплопередачи, которая значительно меньше скорости образования и сбора зарядов в ионизационных детекторах. Ионизационные же детекторы практически мгновенно реагируют на изменение состава газа. [c.43]

    Предел детектирования ДИП при малых уровнях флуктуаций фонового тока и при использовании современных электрометров, способных измерять токи до 10" А на полную шкалу, может достигать 10 мг/с. Это соответствует минимальным содержаниям вещества в детекторе до 5-10 % (по объему) при скорости газа-носителя около 30 мл/мин и молекулярной массе вещества около 100. [c.55]

    Соотношение скоростей газов в любых режимах питания ПФД оказывает большое влияние на устойчивость его работы и зависит от конструкции. Оптима п>ные расходы газов при детектировании серу- и фосфорсодержащих соединений различаются. [c.72]

    Идентичность сорбента в колонках достигается использованием одной партии сорбента. Для сохранения идентичности сорбента в течение всего срока эксплуатации колонок они должны работать одинаковое время и попеременно выполнять роль аналитической и сравнительной колонок, что обеспечивает одинаковое воздействие на сорбент анализируемых веществ. Влияние на баланс схемы различий в скорости газа-носителя, температуре колонок, количестве неподвижной фазы в колонках и чувствительности детектирования зависит от типа применяемого детектора. [c.82]

    Очевидно, что и для капиллярных колонок имеется оптимальная ск(>-рость газа, при которой значение Н минимально. Отметим также, что размывание хроматографической полосы, характеризуемое величинами ап. и Н. быстро растет с ростом диаметра капилляра. Однако слишком сильное сужение капилляра при том же перепаде давления газа в капилляре приводит к резкому снижению скорости газа и, вследствие чего увеличивается значение Н [ввид роста члена BJu в уравнении (112)]. Кроме этого, снижение скорости и ведет к нежелательному увеличению времени анализа. Наряду с этим, с уменьшением диаметра колонки адсорбирующая поверхность стенок или количество нанесенной жидкости (при сохранении толщины ее пленки) сокращается. Поэтому максимальная нагрузка колонки (т. е. величина вводимой в колонку пробы) должна быть сильно уменьшена, а это влечет за собой большие трудности, связанны с быстрой и точной дозировкой малых проб у входа и детектированием малых концентраций компонентов у выхода из колонки. Поэтому выбирается некоторый оптимальный диаметр капиллярной ко. юнки около 0,3 мм. [c.588]

    Поглощение кислорода раствором пирогаллола А из газа, предварительно освобожденного от кислотных компонентов определение количества поглощенного кислорода Определение производится на газоанализаторе типа ГХЛ определяются сумма кислотных газов (СО,, 50о, НгЗидр.) сумма непредельных углеводородов О2 СО Нз сумма предельных углеводородов и На Хроматографическое разделение компонентов природного газа сочетанием парожидкостной и газо-адсор бционной хроматографии и газохроматографического детектирования разделенных компонентов смеси определяется содержание Н,, Не, N2, О,, СО,, СН , СзНв, зНв, изо-С Нщ, Н-С4НЮ, 30-СдН 2> [c.60]

    В случае ИКС-детекторов последовательно регистри] )ую1ся ИК-спектры элюируемы - лз колонки соединений. Поток газа-носителя поступает в кювету, в которой молекулы поглощают ИК-излучение с точно определенной частотой. Чувствительность детектирования зависит от наличия в органических соединениях тех или иных функциональных фупп. Если молекула хорошо поглощает ИК-излучение, то aнaлитичe ш сигнал может быть получен при поступлении в кювету 1 нг вещества. Современные компьютеризованные ИК-спектрометры с преобразованием Ф>рье дают возможность сравнгаать полученные спектры с библиотечными, позволяя тем самым идентифицировать вещества, дополняя масс-спектры Следует заметить, что комбинация ГХ с ИКС и МС является в настоящее время самым мощным инструментом для идентификации суперэкотоксикантов. [c.262]

    В то же время капиллярная хроматография обладает рядом недостатков. К наиболее значительным относятся следующие малые значения коэффициента селективности для слабо сорбирующихся веществ могут свести на нет преимущества высокой эффективности малые значения коэффициентов Генри ограничивают возможности обогащения капиллярная хроматография требует решения более трудных технических задач, чем газо-жидкостная хроматография с насадочными колонками, особенно возникающих при дозировке и детектировании. [c.203]

    Детектирование. В связи с большим объемом выходящего из препаративной колонкн газа обычные детекторы, применяющиеся в аналитической хроматографии, начинают работать нестабильно, их чувствительность резко снижается. Кроме того, некоторые детекторы изменяют состав анализируемого газа. Поэтому в препаративной хроматографии для детектирования следует применять либо специальные детекторы, либо, что делается довольно часто, в обычный аналитический детектор направляют не весь поток газа, а лишь небольшую его долю. В этом случае доля газа, проходящая через детектор, отбрасывается. [c.206]

    В хроматографе работают детекторы двух типов детектор по теплопроводности (ДТП), предназначенный для детектирования органических и неорганических веществ, и детектор ионизации в пламени (ДИП) для детектирования органических веществ. Газ-носитель поступает из баллона и выбирается в зависимости от детектора для ДТП используется гелий, для ДИПа - воздух, азот. Ввод пробы в хроматофаф производится шприцем, если проба жидкая, и газовым дозатором, если проба газообразная. В качестве регистрирующего прибора применен электронный автоматический потенциометр КСП-4-909, записывающий сигналы детектора на диаграммной ленте. [c.297]

    История развития газовой хроматографии в известной степени есть история развития детектора. На первом этапе детектирование основывалось на химическом определении суммарного количества вещества (поглощение газа-носителя, титрование и т. д.). Применение детектора, работающего по принципу измерения теплопроводности (катарометра), создало известный переворот в газовой хроматографии. Катарометр обладает рядом недостатков. Невысокая чувствительность делает его мало пригодным для анализа примесей и микропримесей. Зависимость показаний катарометра от температуры, давления и скорости потока газа-носителя вносит погрешности в результаты анализа. В связи с этим предпринимались поиски новых физических принципов детектирования измерение плотности (газовые весы Мартина), теплот адсорбции, диэлектрической постоянной и др. Эти детекторы не получили широкого распространения из-за сложности изготовления, большой инерционности и по другим причинам. [c.239]

    Применение катарометра — детектора, работающего по принципу измерения теплопроводности, произвело известный переворот в газовой хроматографии. Однако катарометр обладает рядом недостатков. Невысокая чувствительность делает его мало пригодным для анализа примесей и микропримесей. Зависимость показаний катарометра от температуры, давления и скорости потока газа-носителя вносит погрешности в результаты анализа В связи с этим предпринимались поиски новых физических принципов детектирования измерение плотности (газовые весы Мартина), теплоты адсорбции, диэлектрической постоянной и др. [c.44]

    Детектор по плотности газов (весы Мартина, денситомер, или плотномер). Основан на различии плотностей газа-носителя и компонентов анализируемой смеси. Этот детектор имеет ряд преимущества, именно образец не соприкасается с нагреваемыми элементами при таком способе детектирования образец не разрушается, что позволяет анализировать коррозионно-активные вещества в качестве газов-носителей могут использоваться N2O, Аг, СО2. [c.233]

    Отедует подчеркнуть, что предел детектирования соответствует концентрации вещества в газе-носителе, создаваемой в детекторе, а не концентрации анализируемых веществ в пробе при введении в колонку. Учитывая процесс размывания пробы, нужно иметь в виду, что практически измеряемая хроматографом минимальная концентрация веществ в пробе по крайней мере в 5—10 раз выше предела детектирования. [c.40]

    Основной трудностью в достижении малого предела детектиро вания при работе г ДЭЗ является большой уровень флуктуаций, связанный со значительным фоновым током детектора. Этот фоно вый ток неизбежен, так как для получения высокой чувствительности и пропорциональных сигналов от сравнительно больших количеств пробы необходима высокая концентрация свободных электронов. По той же причине недопустимо присутствие в газе-носителе примесей (например, кислорода), снижающих количество электронов или их подвижность. Обычно уровень фонового тока составляет (1—5) 10" А, при этом уровень шума трудно уменьшить ниже 10" А, Значение предела детектирования ДЭЗ находится в интервале S —10" мг/мл, что в среднем на два порядка ниже предела детектирования ионизационно-гламенного детектора и позволяет фиксировать нано- и даже пикограммовые количества веществ, обладающих большим сродством к электрону (например, I4, СвНпС и т. п.). [c.62]

    Блок ионнзаиионного детектирования БИД-36 Блок питания детекторов БПД-56 Усилитель дифференцирующий УД-2М Блок подготовки газов БПГ-1Б Измеритель параметров цифровой ИПЦ-07 Интегратор И-05 Система автоматизации анализа САА-Об САА-05 САА-05-01 Регистратор КСП4 Блок дозирования газов БДГ-П5 Устройство дозирования и обогащения УДО-94 Устройство обогатительное УО-89 Устройство для дозирования пара УРП-82 Автоматический дозатор газов Автоматический дозатор жидкости Блок управления дозаторами БУ-128 [c.115]


Смотреть страницы где упоминается термин Газы, детектирование: [c.484]    [c.638]    [c.83]    [c.98]    [c.125]    [c.142]    [c.11]    [c.80]    [c.81]    [c.109]    [c.113]    [c.116]   
Руководство по газовой хроматографии (1969) -- [ c.149 ]

Руководство по газовой хроматографии (1969) -- [ c.149 ]

Руководство по газовой хроматографии (1969) -- [ c.149 ]




ПОИСК







© 2025 chem21.info Реклама на сайте