Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химический определение

    Определение количества глицерина в жире. Химическое определение содержания глицерина в жирах является довольно трудоемким и продолжительным. (Храпни-тельно неплохие результаты дает расчетный метод. Зная эфирное число жира, можно вычислить содержание глицерина, приняп по внимание, что для высвобождения одной молекулы глицерина надо израсходовать три молекулы едкого кали [c.166]


    Атомом называют мельчайшую частицу элемента, сохраняющую все его свойства, С точки зрения теории строения атомом является устойчивая динамическая система из положительно заряженного ядра и определенного числа электронов. Если число электронов равно числу единиц заряда ядра, атом яв.тяется электронейтральной системой, к которой и относится химическое определение атома, в противном же случае мы имеем дело с положительным или отрицательным ионом. В теории строения такие системы описывают теми же методами, что и электронейтральные атомы, поэтому второе определение обобщает понятие атома и на ионы. Говоря об устойчивости атома, понимают, что энергия атома ниже, чем энергия невзаимодействующих ядра и электронов, т. е. при образовании атома из ядра и электронов энергия выделяется. Обычно за начало отсчета энергии, т, е. за нуль, принимается энергия невзаимодействующих ядра и электронов. Тогда энергия устойчивой системы — атоМа — оказывается отрицательной. [c.16]

    Руководство. API по взаимозаменяемости базовых масел определяет минимальные благоразумные физические и химические определения, необходимые для гарантии, что качество моторного масла не пострадает при замене одного базового масла на другого. Руководство основано на реальных данных испытаний эксплуатационных свойств ряда моторных масел, путем применения разных базовых масел для моторных масел бензиновых и дизельных двигателей. Было использована технология получения масел с применением присадок API SG уровня качества, дополнена до качества API SH и SJ. При составе присадок таких высоких уровней качества, большинство различий в базовых масел перекрывается качеством пакета присадок. В виду этого, Руководство не следовало бы применять для прогнозирования эквивалентную взаимную замену для масел, составленных из пакета присадок уровня качества, меньшего, чем API SH. [c.143]

    Дать химическое определение асфальтенов и смол невозможно, потому что ничего точного о их химическом строении не известна [c.113]

    История развития газовой хроматографии в известной степени есть история развития детектора. На первом этапе детектирование основывалось на химическом определении суммарного количества вещества (поглощение газа-носителя, титрование и т. д.). [c.44]

    Химику-исследователю и инженеру-химику для химического определения веществ и установления возможности их использования необходимо знать некоторые основные характеристики (свойства) этих веществ. Эти свойства должны легко определяться качественно и количественно, что облегчило бы широкое применение их как для характеристики веществ, так и для выявления их специфики. Для нефтяных масел и парафинов подобными характеристиками являются физические свойства, которые в значительной мере определяют не только номенклатуру существующих в настоящее время продуктов и процессы их разделения и очистки, но и пути дальнейшего развития промышленности. [c.172]


    Физические п химические определения при исследовании нефтей и нефтепродуктов 233 Состав газов 236 Состав нефтей [c.377]

    Для оценки качества природных вод образцы ее подвергают физико-химическому анализу. Последний делится на физические и химические определения. [c.121]

    На основании вышесказанного можно сделать вывод, что исследование кинетики и механизма многостадийных электродных процессов с участием органических соединений в общем случае представляет собой весьма непростую проблему. Многочисленность принципиально реализуемых в данной системе химических и электрохимических стадий и неоднозначность пути реакции выдвигают на первый план задачу выяснения химизма изучаемых процессов, т. е. установление природы их основных и побочных конечных продуктов, обнаружения и идентификации возможно большего количества нестабильных промежуточных продуктов реакции (интермедиатов). Решение такой, по существу, чисто химической задачи должно предшествовать решению вопросов физико-химических определению лимитирующих стадий процесса и их кинетических характеристик, нахождению связи между теми или иными параметрами и кинетикой суммарной реакции и ее отдельных стадий. [c.194]

    В действительности квадрупольный момент является тензором, а электрический момент диполя — вектором. Их взаимодействие с цеолитом надо рассчитывать с учетом соответствующих компонент и локального градиента напряженности электростатического поля в полости цеолита или представить общий квадрупольный (дипольный) момент как систему зарядов, распределенных на атомах или связях молекулы, и включить их взаимодействие с ионами решетки цеолита в атом-ионную потенциальную функцию. Последний путь является, вероятно, более правильным, однако он связан с трудностью решения задачи о распределении зарядов по атомам молекулы, которое, в свою очередь, может зависеть от напряженности поля в полости цеолита. Сделанные для СО2 расчеты на основе квантово-химических определений зарядов на атомах дали удовлетворительные результаты. [c.219]

    Потенциометрическое титрование позволяет решать как аналитические задачи — определение концентрации,- так и физико-химические — определение произведения растворимости, констант устойчивости, протолитической диссоциации. Оно основано на резком изменении потенциала электрода, обратимого по отношению к ионам титруемого веиХества, в момент достижения точки эквивалентности. [c.633]

    Сравнение ионов внутренней и внешней обкладок показывает их существенное различие первые характеризуются химической определенностью (это — ионы, образующие данную решетку или изоморфные с ней) и прочно связаны с каркасом решетки химическими связями. Ионы внешней обкладки могут быть любыми по своей природе, поскольку кулоновские силы не специфичны, и единственным требованием является условие равенства абсолютных величин зарядов в обоих обкладках, иначе говоря, условие электронейтральности всей системы в целом . Энергия взаимодействия этих ионов с твердой фазой оказывается значительно меньше, чем энергия химических связей в твердых телах. Она имеет порядок единиц ккал/моль, а следовательно, по уравнению (IX. 31) противоионы обладают значительной подвижностью. Они непрерывно обмениваются с ионами, находящимися в растворе и, если раствор содержит несколько компонентов, заряженных одинаково, то нет причины ожидать, что освободившееся место во внешней обкладке займет такой же ион, а не ион другого вида (с зарядом того же знака). [c.183]

    Сравнение ионов внутренней и внешней обкладок показывает существенное их различие первые характеризуются химической определенностью (это — ионы, образующие данную решетку или изоморфные с ней) и прочно связаны с каркасом решетки химическими связями. Ионы внешней обкладки могут [c.188]

    Важным условием проведения исследований по обоснованию санитарных стандартов содержания реагентов в различных средах является наличие метода химического определения, предоставляемого разработчиком нового реагента или в централизованном порядке специальным ведомственным учреждением по разработке методов химического определения. Чувствительность методов должна быть до- статочной для определения на уровне или ниже величины ПДК. [c.110]

    Химическое определение первичной структуры даже простого полипептида, каким бы методом оно не проводилось, требует огромной затраты времени и сил. В 1958 г. Сэнгер был удостоен Нобелевской премии по химии за расшифровку первичной структуры инсулина — полипептида, состоящего всего лишь из 51 аминокислоты (рис. 25-4). [c.404]

    Твердыми в химической технологии называются все материалы, частицы которых (атомы, ионы, молекулы) постоянно зафиксированы относительно друг друга, в том числе и аморфные тела (например, стекло), которые согласно физико-химическому определению являются переохлажденными жидкостями. [c.37]

    Несмотря на то что свободный хлор редко применяли в химических определениях ненасыщенности, изотоп С1 оказался полезным в определении при строго контролируемых условиях очень [c.232]


    НИЗКИХ концентраций двойных связей в некоторых синтетических полимерах. Этот радиоизотоп является источником чистого р-излучения (Емакс = 0,714 Мэв) и имеет период полураспада, равный 3,1 X 10 лет. Хлор легко получать путем разложения хлорида палладия (И) [66] и количественно переносить с помощью линии, откачанной до высокого вакуума, с кранами без смазки. Радиоактивность газообразного хлора удобно измерять путем поглощения известного его количества в растворе избытка стирола в четыреххлористом углероде. Со стиролом хлор реагирует мгновенно, и радиоактивность образующегося раствора можно измерять счетчиком Гейгера — Мюллера, который применяют в радио-изотопном анализе жидких образцов. Химическое определение хлора легко осуществить путем титрования иода, выделяющегося при поглощении хлора в водном растворе иодида калия, раствором тиосульфата. [c.233]

    Б. Н. И в а н о в-Э мин. Методы химического определения галлия и индия в минеральном сырье.М.—Л., Госгеолиздат, 1946, стр. 12—18. [c.226]

    Колориметрические методы рекомендованы для определения ртути в строительных материалах [404] и катализаторах [426]. Для определения ртути в алюминии и продуктах его коррозии использован спектральный анализ [582. Последний метод применен также для определения примеси ртути в окиси меди [92], окиси бериллия [867] и других веществах [1075], Методом атомной абсорбции определяли примеси ртути в неорганических веществах [1329] и растворах кислот [279], гидроокиси лития [625]. Метод нейтронного активационного анализа предложен для определения примесей ртути в карбонате и гидроокиси лития [602. Описана методика активационного определения микропримеси ртути в реактивах, используемых обычно при химическом определении ртути (кислоты, дитизон, тиоацетамид, цистеин и др.) [543]. [c.158]

    Важной частью любого исследования чистой культуры является состав среды, в которой происходит рост организмов. Сложная питательная среда типа питательного бульона, часто используемая в бактериологических лабораториях, непригодна для проведения работ с битумами. Такие среды состоят из органических материалов типа пептонов или мясных экстрактов и углеводов в качестве источника углерода и энергии для роста микроорганизмов. В такой среде организмы, которые могут разрушать битум или углеводород, как правило, отдают предпочтение углеводу, а не углеводороду. Поэтому для исследования действия микроорганизмов на битумы нужно получить химически определенную среду, содержащую азот, фосфор, серу и ионы металлов, необходимые для роста, но не содержащую углеводов или каких-либо других легко ассимилирующихся форм углерода. Такой средой является состав, предложенный Филлипсом и Трекслером [20]. Выбор правильного сочетания ингредиентов усложняется тем, что у различных организмов требования к пище неодинаковы. В табл. 5.1 приводится состав среды, использованной для роста организмов класса Pseudomonas на углеводородах. Часто такие среды способствуют также росту организмов других видов. Чтобы установить, будет ли эта среда поддерживать рост организмов определенного вида, следует ввести глюкозу и привить организм. Если будет наблюдаться рост, то среда,, вероятно, может быть пригодна для роста микроорганизмов данного вида при использовании углеводорода или битума в качестве источника углерода вместо глюкозы. [c.179]

    Фолиевая кислота Не обладает флуоресценцией, но продукты распада, возникающие в результате ее окисления, приобретают способность флуоресцировать голубым светом. На этом свойстве фолиевой кислоты основаны некоторые методы ее химического определения. [c.200]

    Существующие методы химического определения витамина В12 основаны главным образом на измерении абсорбции -света в ультрафиолетовой части спектра. [c.206]

    Стандарт СЭВ 742—77. Продукты химические. Определение цветности в единицах Хазена (шкала платинокобальтовая). [c.293]

    Тяжелые углеводороды. Под этим термином понимаются прежде всего все непредельные углеводороды, затем бензол и его гомологи, отчасти пары жидких метановых углеводородов. Во всяг ом случае, только с некоторым приблия-гением можно понимать их как химически определенную группу. Для удаления их из газовой смеси пользуются связыванием их дымящей серной кислотой или бромной водой Первая растворяет непредельные углеводороды и ароматические. вторая связывает в ввде жидких бромидов, причем наблюдается постепенное обесцвечивание бромной воды (чтобы реактив не терял своей способности связывать непредельные соединения, в пипетке всегда должен быть свободный бром 2—4 г). На свету бром отчасти замещает водород в метановых углеводородах с другой сто-)оны, серная кислота растворяет отчасти и метановые углеводороды. Лоэтому при работе ио обоим методам, вообще говоря, не может быть строгого совпадения. Разница (несколько процентов) зависит от различных внешних, условий. Всегда надо указывать, какик реактивом произведено отделение тяжелых углеводородов. [c.384]

    A. Н. Блаженнова, А. А. Ильинская и Ф. М. Рапопорт. Анализ газов в химической промышленности. Госхимиздат, 1954, (328 стр.). Книга посвящена описанию методов химического анализа газов. В ней изложены общие сведения о технике работы с газами, описаны газоанализаторы различных систем и другие приборы, а также реактивы, применяющиеся при анализе газов. Приведены подробные методики химического определения отдельных газов, паров и взвешенных примесей и анализа различных промышленных газовых смесей. [c.490]

    Расчет температуры точки росы требует знания состава дымовых газов в отношении содержания НгО и 50з. Измерение содержания водяных паров в дымовых газах рассмотрено в главе четвертой кроме того, если известен состав слшгаемого топлива, коэффициент избытка и влажность воздуха, содержание водяных паров в газах может быть достаточно точно определено расчетным путем. Определение содержания 50з в газах сопряжено с большими трудностями, вызываемыми, с одной стороны, малым содержанием его в газах, а с другой, — присутствием в них ЗОг. Так, например, содержание сернистых соединений в дымовых газах в отношении 50з характеризуется миллионными долями объема, а ЗОг может доходить до 0,3%. Содерл<ание ЗОз, кроме того, должно определяться с максимально возможной точностью, поскольку небольшие изменения его концентрации вызывают заметные отклонения в температуре точки росы. Погрешности в определении ЗОз получаются или в результате преждевременной его конденсации на пути к газоаналитической аппаратуре, или вследствие окисления ЗО2 во время анализа. Последнее происходит при абсорбции газов в водных растворах по-разному сильно, в зависимости от содержания и характера примесей, играющих роль катализаторов. Это явление может быть исключено тари применении надлежащего ингибитора. Рассмотрим некоторые методы химического определения ЗОз в газах. [c.114]

    История развития газовой хроматографии в известной степени есть история развития детектора. На первом этапе детектирование основывалось на химическом определении суммарного количества вещества (поглощение газа-носителя, титрование и т. д.). Применение детектора, работающего по принципу измерения теплопроводности (катарометра), создало известный переворот в газовой хроматографии. Катарометр обладает рядом недостатков. Невысокая чувствительность делает его мало пригодным для анализа примесей и микропримесей. Зависимость показаний катарометра от температуры, давления и скорости потока газа-носителя вносит погрешности в результаты анализа. В связи с этим предпринимались поиски новых физических принципов детектирования измерение плотности (газовые весы Мартина), теплот адсорбции, диэлектрической постоянной и др. Эти детекторы не получили широкого распространения из-за сложности изготовления, большой инерционности и по другим причинам. [c.239]

    Исследование способов образования и поведения молекул с возможно более разнообразными заместителями позволило подойти не только к химическому определению конфигурации молекулы, но и к выяснению природы связи и внутримолекулярных взаимодейстаий. [c.97]

    Хорошо известно, что однодетерминантное представление волновой функции принципиально не применимо для моделирования гомолитического расщепления химической связи [62]. Корректное описание радикальной пары на расстояниях от ковалентного связывания (молекулы) до изолированных радикалов возможно с помощью методов интенсивного учета электронной корреляции, что сильно ограничивает размеры исследуемых соединений. Поэтому построение даже фрагментов поверхности потенциальной энергии (ППЭ) распада пероксида требует больших временных и компьютерных ресурсов и к настоящему моменту времени проведено только для пероксида и триоксида водорода [63—68]. Другим подходом к исследованию механизма гомолиза является кванто-во-химическое определение энергий активации и тепловых эффектов различных направлений распада пероксида, позволяющее ограничиться расчетом стационарных точек (равновесные структуры и переходные состояния) на ППЭ. С помощью этого подхода изучены механизмы распада диоксиранов [69] и азотсодержащих пероксидов на примере HOONO [70], HOONO2 и Me (0)00N02 [71-73]. [c.182]

    Данные перегонки заносят обычно в таблицу, включающую следующие рубрики 1) номер фракции, 2) температура кипения (иногда приводится давление), 3) объем отобранного дистиллата или вес фракции, 4) общий объем (или вес) дистиллата. Обычно при контроле за ходом перегонки не ограничиваются одной лишь температурой кипения, но измеряют и другие физические константы фракций (показатель преломления, плотность, а у оптически активных веществ—удельное вращение). Можно использовать и любые другие характеристические константы желательно лишь, чтобы их значения для отдельных компонентов смеси как можно больше отличались друг от друга. Измерение таких констант дает наиболее четкую картину хода разделения веществ в процессе ректификации. Можно воспользоваться и химическими определениями (например, число кислотности, число омыления, йодное число, определение гидроксильных групп по Церевитинову и Чугаеву, определение карбонильной группы и т. д.) и определением физических свойств (температура плавления, инфракрасные, видимые и ультрафиолетовые спектры и т. д.). Если процесс перегонки контролируют одним из перечисленных способов, то полученные результаты также записывают в таблицу. В примечании можно указать и другие данные, имеющие значение при возможном воспроизведении опыта, например температуру в обогревательной рубашке, температуру в перегонной колбе, нагрузку колонки, флегмовое число и т. д. В случае точной перегонки вычисляют истинную температуру кипения с поправкой на давление и частичное погружение термометра. [c.255]

    Сравнительно недавно предложена общая схема определения меркаптанов, сероводорода, элементарной серы, алифатических и циклических. сульфидов, дисульфидов, тисфенов и общей серы. Используются семь методов, основанных на сочетании полярографического, потенциометрического, спектрофотометрического, масс-спектрального и химического определений [43]. Опубликованы сравнительные результаты 20 качественных определений серы в нефтях [44]. [c.264]

    Общепредметный указатель включает понятия, которые не являются названиями определенных химических веществ. В него включены классы химических соединений, неполностью химически определенные материалы, применения веществ, их свойства, реакции, процессы и аппараты, обиходные и научные названия животных и растений. Если ссылки о бензойной кислоте, как уже было сказано выше, содержатся в указателе химических соединений, то ссылки о классе карбоновых кислот мол<но найти в общепредметном указателе. [c.226]

    Химические методы определения функциональных групп сохранили в большой мере свое значение до сих пор, хотя сведения о функциональных группах сейчас могут быть получены с помощью более современных методов — инфракрасной и ультрафиолетовой спектроскопии, ядерного магнитного резонанса и масс-спекгрометрип. Химические методы сохраняют свое значение не только потому, что их точность ( 5%) обычно достаточна для решения наиболее часто встречающейся задачи — выяснения числа одинаковых функциональных групп (обычно от О до 3), содержащихся в данном соединении. Гораздо важнее то, что в отличие от результатов физико-химических исследований, часто зависящих от окружающих группировок, результаты химических определений обычно дают нулевые значения или близкие к ним в случае отсутствия определяемых функциональных групп. [c.37]


Смотреть страницы где упоминается термин Химический определение: [c.130]    [c.126]    [c.156]    [c.288]    [c.470]    [c.510]    [c.37]    [c.439]    [c.137]    [c.98]    [c.188]    [c.188]    [c.336]   
Энциклопедия полимеров Том 3 (1977) -- [ c.0 ]

Энциклопедия полимеров том 1 (1972) -- [ c.0 ]

Энциклопедия полимеров Том 1 (1974) -- [ c.0 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте