Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катодный контроль

    При коррозионных процессах с кислородной деполяризацией, которые очень часто, протекая с катодным контролем, тормозятся и замедленностью реакции ионизации кислорода на катодных участках, и в значительной степени замедленностью диффузии кислорода к катодным участкам, общее сопротивление (поляризуемость) катодного процесса Р можно (по Н. Д. Томашову) количественно разделить на сопротивление катодной реакции Рр и сопротивление диффузии кислорода Рд. Это можно сделать на основании взятых из поляризационной коррозионной диаграммы величин коррозионного тока (точка В на рис. 185 — пересечение анодной и катодной кривых) и предельного диффузионного тока по кислороду /д (точка Е на рис. 185 — вторая точка [c.276]


    Значение последнего позволяет рассчитать степень анодного и катодного контроля работы многоэлектродной системы, т. е. соответствующего суммарного процесса коррозии нескольких металлов в контакте друг с другом  [c.288]

    В большинстве практических случаев коррозия подземных сооружений протекает с преимущественным катодным контролем, обусловленным торможением транспорта кислорода к металлу. [c.385]

    В морской воде, коррозия в которой протекает с катодным контролем и условия для пассивности металлов неподходящи, катодные контакты являются вредными, а часто и опасными для ответственных конструкционных узлов с малой поверхностью. [c.402]

    Только в случае коррозионных пар, имеющих достаточную большую протяженность (например, почвенная коррозия трубопроводов, коррозия под действием контакта в трубе и т. п.), приходится наряду с поляризационными характеристиками катода и анода учитывать также и омический фактор. Зная величину омического сопротивления коррозионных элементов, можно решать количественные вопросы о соотношении между торможением процесса коррозии омическим фактором и ранее рассмотренным анодным и катодным торможением, т. е. о соотношении между омическим, анодным и катодным контролем процесса. [c.53]

    При анодном процессе (кривая аз ) коррозия идете водородной деполяризацией, так как протекает при потенциалах более отрицательных нормального водородного потенциала Янг А , з> Д аз, т. е. наблюдается катодный контроль. Скорость коррозии может быть понижена при наличии (В сплаве включений, повышающих перенапряжение водорода. [c.7]

    Торможение катодных процессов способствует повышению коррозионной стойкости сплавов лишь в тех случаях, когда коррозия идет с катодным контролем, и определяется кинетикой процесса восстановления катодного деполяризатора. Торможение катодного процесса в [c.37]

    В реальных конструкциях возможно возникновение коррозии ввиду наличия щелей и зазоров. Вследствие различного поступления кислорода к металлу в зазоре и объеме возникает пара дифференциальной аэрации, где алюминий в зазоре служит анодом коррозионного элемента и подвергается усиленной коррозии. Заметное усиление коррозии алюминия в зазоре связано с тем, что площадь катода превосходит площадь анода. При отношении площади катода к площади анода, равном 10 1, скорость коррозии анода возрастает в 4—5 раз по сравнению с отношением 1 1. Это объясняется тем, что при площади катода, на порядок большей площади анода, катодный контроль работы элемента меняется на смешанный или анодный и дальнейшая работа элемента зависит от состава коррозионной среды в зазоре, что может, например, при подкислении среды существенно увеличить ток коррозии в элементе. [c.58]


    В условиях катодного контроля снижение концентрации кислорода приводит к катодной поляризации (рис. VI.1, кривая 2 ). Анодный процесс несколько тормозится увеличивается наклон анодной поляризационной кривой (У).Плотность коррозионного тока снижается до величины г потенциал электродной [c.185]

    Скорость этой реакции в большинстве сред велика, о чем свидетельствует отсутствие поляризации при наложении внешнего анодного тока. Скорость коррозии железа обычно лимитируется катодной реакцией, которая, как правило, значительно медленнее (катодный контроль). В неаэрируемых растворах катодная реакция имеет вид [c.99]

    Если контактирующие металлы погружены в неаэрируемые растворы, где коррозия сопровождается выделением водорода, увеличение площади более благородного металла приводит к увеличению коррозии менее благородного. На рис. 6.6 предста ены поляризационные кривые для анода, слабо поляризованного по сравнению с катодом, на котором происходит выделение водорода (катодный контроль). Наклон кривой 1 отвечает поляризации более благородного металла, имеющего высокое водородное перенапряжение. Наклоны кривых 2 и 3 отвечают металлам с низким водородным перенапряжением. Проекции точек пересечения анодных н катодных поляризационных кривых на ось lg I дают соответствующие гальванические токи. Заметим, что любой металл, на котором происходит разряд ионов водорода, является водородным электродом, который при давлении водорода 0,1 МПа имеет равновесный потенциал —0,059 pH вольт. Рис. 6.7 иллюстрирует случай, когда корродирующий металл контактирует с более благородным, имеющим переменную площадь. На оси абсцисс вместо логарифма полного тока нанесен логарифм плотности тока. Если анод площадью Ла контактирует с более благородным металлом площадью Л , то плотность гальванического тока на аноде в результате контакта будет равной [c.114]

    В условиях катодного контроля снижение концентрации кислорода приводит к катодной поляризации (рис. VI. 1, кривая 2 ). Анодный процесс несколько тормозится увеличивается наклон анодной поляризационной кривой ( ). Плотность коррозионного тока снижается до величины /а потенциал электродной пары — до Ес и скорость коррозии резко падает. Затруднение подвода кислорода к катодным участкам может привести и к тому, что потенциал стали достигнет таких значений, когда процесс коррозии будет протекать с водородной деполяризацией. В морских условиях этот процесс возможен в присутствии сероводорода или при затрудненном доступе кислорода. [c.185]

    Так как электрохимическая коррозия протекает через несколько взаимосвязанных стадий, то скорость ее зависит от скорости самой медленной стадии, называемой лимитирующей (контролирующей) стадией процесса. Все остальные стадии вынуждены иметь скорость, равную скорости лимитирующей стадии процесса. Поскольку коррозионные элементы являются короткозамкнутыми микроэлементами, то движение электронов в металле не может быть лимитирующей стадией процесса. Движение ионов в растворе обычно также не лимитирует процесс коррозии ввиду очень малого расстояния между микроэлектродами (исключение составляют растворы с очень малой электропроводностью). Следовательно, лимитирующими стадиями могут быть или реакции анодного окисления металла (анодный контроль), или реакции катодного восстановления окислителя (катодный контроль), или те и другие одновременно (смешанный контроль). [c.214]

    Морская коррозия металлов протекает по электрохимическому механизму преимущественно с кислородной деполяризацией. При коррозии в морской воде имеет место смешанный диффузионнокинетический катодный контроль (рис. 283), который в зависимости от условий может переходить в преимущественно диффузионный (неподвижная морская вода, наличие на металле большого количества вторичных продуктов коррозии) или преимущественно кинетический (при быстром движении морской воды или судка). Катодный процесс коррозии при этом идет на поверхности [c.398]

    Начальные участки поляризационных кривых (рис. 293) указывают на преобладание катодного контроля при коррозии железа в расплаве Na l, а значение энергии активации катодного процесса в этой области (18 ккал/моль — рис. 294) близко к значению энергии активации вязкости Na l (13 ккал/моль), что указывает на контроль катодного процесса диффузией основного деполяризатора (кислорода) к катоду, скорость которой в значительной мере зависит от вязкости расплава. [c.409]

    Анализ коррозионных п1)оцессов, проведенный Н. Д. Томашо-вым, позволяет заключить, чго в большинстве практических слу-чаев коррозионные микронары с полным основанием можно рае сматривать как короткозамкнутые пары. Такое допущение позволяет весьма просто определить скорость корро.зни по величине максимального коррозионного тока н, что не менее важно, количественно оценить степени торможения протекания корро И1 анодным и катодным процессами, т. е. определить величину анодного и катодного контроля. Соотношение между анодным н катодным торможением может быть получено непосредственно из поляризационной диаграммы коррозии, по величине соотношения [c.52]


    Поляризационная диаграмма для типичных случаев контроля электрохимической коррозии приведена на рис. 1.3, на ней катодный лроцесс представлен кривой oJPQMN. При анодном цроцессе, характеризуемом кривой Es,lQ, коррозионный процесс идет с преимущественным катодным контролем Д к1>А а1 с кинетическим торможением катодного процесса. В этом случае основным контролирующим факторов является перенапряжение ионизации кислорода (или другого окислительного деполяризатора). [c.7]

    При анодном процессе Еа2М сохраняется катодный контроль АЕк2 >АЕд,2, однако контролирующим фактором становится диффузия кислорода. Скорость коррозии почти целиком зависит от скорости. подвода окислительного деполяризатора, т. е. от величины предельного диффузионного тока по кислороду. [c.7]

    Анализируя изложенные способы повышения коррозионной стойкости сплавов, необходимо отметить, что рациональный выбор состава сплава зависит от условий его эксплуатации и должен быть основан на усилении основного контролирующего фактора коррозии. Так, если сплав в данных условиях не склонен к пассивации и корродирует в активном состоянии с выделением водорода, то следует находить методы цовышения катодного контроля увеличением перенапряжения водорода или [c.39]

    Однако степень анодного и катодного контроля достаточна для обеспечения высокой коррозионной стойкости. Испытания опытных алюминированных насосных штанг из сталей 40У и 20ХН проводили на одной из скважин Ромадановского месторождения. Продукция этой скважины была обводнена на 20 % и содержала значительное количество серусодержащих соединений, в том числе и сероводорода. Результаты этих испытаний позволили сделать вывод о высокой защитной способности алюминиевого покрытия насосных штанг. [c.126]

    Когда поляризация происходит преимущественно на катоднкх участках, говорят, что коррозия протекает с катодным контролем, а коррозионный потенциал близок к потенциалу анода разомкнутого контура. Примерами служат цинк, корродирующий в серной кислоте, и железо в природных водах. [c.62]

    Коррозионный процесс с катодным контролем характерен для большинства плотных и увлажненных почв, когда определяющей является реакция присоединения электрона (водородная или кислородная деполяризация), протекающая с меньшей скоростью. Для сухих, рыхлых и хорошо аэрируемых почв характерен анодный контроль, когда затруднен отвод положительных ионов металла от анодного участка поверхности металлического сооружения. В условиях работы макроэлементов дифференциальной аэрации преобладает смещанный катодно-омический или омическнн контроль. В последнем случае процесс коррозии затормаживается в основном 46 [c.46]

    Известно, что общая скорость процесса коррозии определяется скоростью той реакции, которая протекает с наименьшей интенсивностью. Эта стадия процесса называется контролирующим фактором, так как она контролирует скорость всего процесса. Если коррозия металла подземного сооружения определяется деятельностью микро-коррозионных элементов, то контролирующим фактором процесса является катодная или анодная реакция. Коррозионный процесс с катодным контролем (катодна51 реакция) характерен для большинства плотных и увлажненных грунтов, когда основную роль играет реакция присоединения свободного электрона (кислородная или водородная деполяризация) протекающая с минимальной скоростью. Это объясняется торможением поступления воздуха к поверхности корродирующего металла. Для сухих, рыхлых и хорошо аэрируемых грунтов характерен анодный контроль, когда затруднен отвод положительных ионов металла от анодного участка поверхности металлического [c.45]


Смотреть страницы где упоминается термин Катодный контроль: [c.278]    [c.278]    [c.279]    [c.279]    [c.358]    [c.360]    [c.360]    [c.361]    [c.374]    [c.377]    [c.377]    [c.385]    [c.386]    [c.398]    [c.459]    [c.52]    [c.37]    [c.156]    [c.62]    [c.130]    [c.393]    [c.7]    [c.39]   
Ингибиторы коррозии (1977) -- [ c.88 ]

Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.42 , c.43 ]

Коррозия пассивность и защита металлов (1941) -- [ c.284 , c.350 ]




ПОИСК





Смотрите так же термины и статьи:

Ток катодный



© 2025 chem21.info Реклама на сайте