Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ разделяемых компонентов количественный

    Смесь углеводородов вводят в газовый хроматограф, где она перево-дится в парообразное состояние и разделяется на колонке. Компоненты смеси после разделения регистрируются детектором. Сигнал детектора фиксируется регистрирующим прибором и выходная кривая (хроматограмма) записывается самописцем. Качественный анализ основан на определении времени выхода компонентов, которое при постоянном режиме работы хроматографа зависит от природы компонентов. Количественный анализ проводится путем измерен ния площади пиков соответствующих компонентов на хроматограмме. [c.355]


    Ход работы. Проводят количественный хроматографический анализ искусственной смеси методом внутренней нормировки с учетом калибровочных коэффициентов. Площади пиков на хроматограммах измеряют, в зависимости от размеров, симметричности пиков и степени разделения компонентов, одним из известных способов. Разделив массу компонента в пробе на его площадь на хроматограмме, находят калибровочный коэффициент для каждого компонента. Результаты расчетов сводят в таблицу  [c.244]

    Ионообменная хроматография используется как вспомогательный метод, предшествующий количественному определению веществ. При помощи хроматографического метода разделяют компоненты анализируемого раствора катионы от анионов, катионы от катионов, анионы от анионов. Ионообменная хроматография основана на обратимом стехио-метрическом обмене ионов, содержащихся в растворе, на подвижные ионы ионообменника. Одновременно с разделением элементов осуществляется их концентрирование, что имеет большое значение для повышения точности результатов анализа при определении примесей. Количественное определение веществ после их хроматографического разделения проводят химическими, физико-химическими или физическими методами. Различают три вида ионообменной хроматографии фронтальный анализ, вытеснительная хроматография и элюентная хроматография. Из них в количественном анализе применяют только вытеснительную и элюентную хроматографию. По этим методам разделяемую смесь вначале адсорбируют в верхней части колонки, а затем элюируют соответствующим растворителем (элюентная хроматография) или раствором (вытеснительная хроматография). [c.19]

    Количественный анализ — раздел аналитической химии, изучающий методы количественного определения состава веществ. Применение методов количественного анализа позволяет устанавливать количественные соотношения между элементами, ионами, молекулами и другими составными частями исследуемых индивидуальных веществ и выводить, их химические формулы определять процентное содержание полезных минералов в рудах осуществлять контроль готовой продукции проведением полного анализа или определением отдельных колшонентов. Во всех этих случаях количественному анализу должен предшествовать качественный, так как некоторые методы количественного определения одного из компонентов не могут использоваться в присутствии ряда других составных частей. [c.271]

    Количественный анализ — раздел аналитической химии, в задачу которого входит определение количества (содержания) элементов (ионов), радикалов, функциональных групп, соединений или фаз в анализируемом объекте. К.а. позволяет установить элементный и молекулярный состав исследуемого объекта или содержание отдельных его компонентов. В зависимости от объекта исследования различают неорганический и органический анализ. В свою очередь их разделяют на элементарный анализ, задача которого установить, в каком количестве содержатся элементы (ионы) в анализируемом объекте, на молекулярный и функциональный анализы, дающие ответ о количественном содержании радикалов, соединений, а также функциональных групп атомов в анализируемом объекте.Классическими методами К. а. являются гравиметрический (весовой) анализ и титриметрический (объемный) анализ. [c.68]


    Жидкостная экстракция все более широко используется как один из стандартных методов химического анализа. Наибольшее применение жидкостная экстракция получила для анализа металлов. Соединения, способные образовывать хелатные комплексы, обеспечивают чрезвычайно высокие коэффициенты распределения и позволяют количественно разделять компоненты одной-двумя операциями равновесной экстракции. Методы анализа с помощью таких агентов подробно описаны Моррисоном и Фрейзером [c.423]

    Бумажная хроматография имеет большое значение для качественного анализа. Однако ее использование в количественном анализе весьма ограничено, в связи с тем что в большинстве случаев необходимо полностью разделять компоненты, а количественное разделение методом бумажной хроматографии дает недостаточно точные и плохо воспроизводимые результаты. [c.523]

    Ввод пробы. Величина пробы влияет па разделение компопентов. Существует определенный максимум объема пробы, для которого эффективность колонки близка к оптимальной. Увеличение объема приводит к возрастанию не только высоты Г по и ширины пиков, что вызывает их взаимное перекрывание. Чем труднее разделяются компоненты, тем меньше должна быть проба, так как небольшая проба дает более симметричные пики и лучшее разделение. Минимальная величина пробы определяется способом ее ввода в прибор, ограничениями, которые накладываются чувствительностью детектора, количественными соотношениями компонентов в анализируемой газовой смеси. Практически объем пробы, разделяемой методом газовой хроматографии (насадочные колонки), для газа 0,2—20 Особое внимание следует уделить воспроизводимости условий ввода проб, так как это может существенно повлиять на точность хроматографического анализа. [c.136]

    Кулонометрические методы могут быть прямыми, если определяемое вещество электролитически осаждается на электроде (снимается с него) или же окисляется (восстанавливается) непосредственно на электроде, а затем удаляется с него в массу анализируемого раствора, и косвенными, если на рабочем электроде генерируется какой-либо промежуточный компонент, количественно реагирующий с определяемым веществом. В первом из указанных вариантов обычно контролируют потенциал рабочего (генераторного) электрода, во втором — силу тока, проходящего через электролитическую ячейку. По этой причине методы кулонометрического анализа разделяют на две большие группы кулонометрию при контролируемом потенциале и кулонометрию при постоянной силе [c.5]

    Хроматографические методы анализа применяют в основном к экстрактам полимеров. Для разделения экстрактов широко используют все виды жидкостной хроматографии. Доминирующим хроматографическим методом определения стабилизаторов до настоящего времени остается тонкослойная хроматография (ТСХ), благодаря малой продолжительности анализа, высокой чувствительности метода, несложности оборудования и возможности одновременного анализа многих компонентов, которые могут быть разделены в одном хроматографическом процессе. Распространению метода способствовал промышленный выпуск готовых пластинок. Хотя основную ценность этот метод имеет для идентификации добавок, он позволяет получать и количественные результаты, причем не с меньшей точностью, чем другие хроматографические методы. Количественное определение можно проводить после снятия пятен с пластинки и экстракции их полярным растворителем или непосредственно на пластинке с использованием сканирующих денситометров. [c.245]

    Последняя практическая работа в этом разделе — очистка газов методом химического поглощения примесей. Следует подчеркнуть, что этот метод имеет большое значение в лабораторной практике. На нем основаны методы газового анализа, с которыми учащиеся познакомятся в практикуме по химическому анализу, и методы количественного элементного анализа органических веществ, с которым учащиеся познакомятся в соответствующем разделе практикума. В лаборатории неорганической химии целесообразно познакомить учащихся с простейшим вариантом такой очистки - очисткой воздуха от углекислого газа путем поглощения последнего щелочью. В воздухе постоянно содержится углекислый газ (или оксид четырехвалентного углерода СОг). Для очистки от него воздух можно пропустить через раствор щелочи, которая взаимодействует с углекислым газом, связывая его в соответствующую соль угольной кислоты. Другие компоненты воздуха с раствором щелочи химически не взаимодействуют. Чтобы эксперимент был наглядным, в качестве поглотителя целесообразно использовать раствор гидроксида кальция или гидроксида бария (известковую или баритовую воду). При взаимодействии с углекислым газом в этих растворах образуются нерастворимые в воде карбонаты кальция или бария, и прозрачный раствор мутнеет. В растворах гидроксида натрия или калия поглощение углекислого газа идет не менее интенсивно, но без внешних эффектов. [c.34]

    Метод газовой хроматографии является одним из самых современных методов анализа. Его отличительные черты — экспрессность, высокая точность, чувствительность, возможность автоматизации. С помощью этого метода могут быть решены многие аналитические проблемы выбором хроматографической системы и рабочих условий. Широкий набор стационарных жидких фаз и адсорбентов, с одной стороны, программирование температуры, высокое давление, специфические методы детектирования, с другой стороны, позволяют разделять и количественно определять соединения с едва заметной разницей в давлении пара. Степень универсальности и гибкости метода газовой хроматографии во многом определяется существующим техническим уровнем аппаратуры. Если в качественной газовой хроматографии надежная идентификация компонентов смеси может быть чаще всего обеспечена лишь сочетанием с други- [c.70]


    Газовая хроматография является в настоящее время основным методом качественного и количественного анализа летучих органических соединений [2, 5, 132—134). Как известно, инструментальная хроматография является гибридным методом [134] хроматографическая колонка разделяет компоненты пробы на отдельные зоны, а детектор обычно измеряет концентрацию разделенных компонентов в газе-носителе после их выхода из колонки. Хроматографическая колонка обычно выполняет две функции 1) разделяет смеси на отдельные компоненты и 2) является источником информации о величинах удерживания (времени удерживания или объеме удерживания), на основании которых проводится хроматографическая идентификация компонентов исследуемой смеси. [c.36]

    Изучение зависимости между интенсивностью поглощения и длиной волны излучения является основной задачей инструментального раздела оптики — спектрофотометрии. Спектрофотометрические методы исследования применяются для установления связи спектров поглощения газообразных, жидких и твердых веществ с составом и строением последних, а также для определения концентраций тех или иных компонентов в фазах переменного состава. Количественная абсорбционная спектрофотометрия основана на законе, установленном П. Бугером в 1729 г., детально изученном И. Ламбертом (1760) и примененном для целей анализа А. Бером (1854). [c.179]

    Аналитическая химия состоит из двух разделов качественного анализа н количественного аналнза. При помощи качественного ан лиза устанавливают, из каких элементов (или ионов) состоит исследуемое вещество. Задачей количественного анализа является определение количественного содержания элементов, ионов или химических соединений, входящих в состав исследуемых веществ и материалов. Результаты качественного анализа не дают возможности судить о свойствах исследуемых материалов, так как свойства определяются не только тем, из каких частей состоит иссле-дус мый объект, но и количественным их соотношением. Например, двг различных минерала — каолинит и пирофиллит — имеют одинаковый качественный состав н состоят из Si02, AI2O3 и Н2О. Различие в свойствах этих минералов определяется различным соот-HouienneM названных компонентов. [c.9]

    Количественный молекулярный анализ по инфракрасным спектрам поглощения обычно применяют к смесям, которые состоят из невзаимодействующих и неассоциирующих компонентов. В этом случае инфракрасный спектр системы получается аддитивно из спектров ее отдельных составляющих. Количественный анализ взаимодействующих компонентов относится к области кинетики химических реакций. Приложение спектроскопии к исследованию кинетики реакций изложено в разделе IV ( 94). Описанный там метод полностью применим и к инфракрасным спектрам. [c.271]

    Тонкослойная хроматография находит все большее применение для количественного определения углеводов. Этот метод чрезвычайно полезен при изучении кинетики реакций, исследовании их механизма и определении выхода продуктов, однако он применим лишь для анализа смесей, компоненты которых можно полностью разделить. Способы количественного определения делят на две большие группы а) прямое определение (установление количества вещества непосредственно на пластинке) б) косвенное определение (элюирование пятен вещества с последующим анализом элюата физическими методами) [1]. [c.46]

    В аналитической химии существуют методы разделения и методы определения. Основной задачей методов разделения является главным образом отделение мешающих компонентов или выделение определяемого компонента в виде, пригодном для количественного определения. Однако нередко определение интересующего компонента производится прямо в пробе без предварительного разделения. В некоторых случаях методы разделения и определения настолько тесно связаны между собой, что составили неразрывное целое. Представителем таких методов является газовая хроматография. В процессе хроматографирования смесь разделяется на компоненты, и количественно определяется содержание компонентов. Такие методы анализа иногда называют гибридными, подчеркивая тесную связь отделения и определения как характерную особенность. [c.13]

    В данном разделе рассматриваются физические, химические и ферментативные методы, которые используются при исследовании метаболизма бактерий. В последующих главах описаны физические методы и приборы, фракционирование и анализ химических компонентов, выделение и количественное определение ферментов, изучение катализируемых ими реакций, а также исследование проницаемости клеток и транспортных процессов. Все эти вопросы разработаны настолько хорошо, что вполне оправданно опубликование специальных книг, посвященных их методологии и применению. Однако в данном случае авторы ограничились описанием только самых надежных и простых методов, которые могут использовать для достаточно основательного изучения метаболизма бактерий даже начинающие исследователи. [c.166]

    В разделе о классификации методов количественного анализа было "указано на большое значение методов фазового разделения. Из таких методов наиболее широко применяется осаждение. Наряду с образованием твердых фаз используют также образование летучих соединений кроме того, известен ряд методов, когда определяемый компонент переводят в жидкую фазу, не смешивающуюся с водой. Из методов, основанных на выделении одного из компонентов в виде газа, наибольшее значение имеют методы определения гигроскопической и химиче ки связанной воды. [c.109]

    Пример. При хроматографическом анализе воздушных проб на колонках, заполненных молекулярными ситами-цеолитами типа ЫаХ и СаХ, содержащиеся в воздухе N2 или Оа хорошо разделяются и регистрируются детектором на диаграммной ленте в виде отдельных пиков (рис. 9.14). Четкость разделения кислорода и азота обусловливает весьма высокую точность результатов количественного анализа. Из-за близкой поляризуемости молекул кислорода и аргона эти газы в указанных условиях не разделяются (на хроматограмме один пик), а все другие компоненты из-за концентрации не регистрируются. [c.238]

    Выделение одного из компонентов в жидкую фазу, не смешивающуюся е водой, применяется в количественном анализе в двух формах экстрагирование органическими растворителями и электролиз с ртутным катодом. В обоих с.чучаях, как было отмечено в 5 и 6, важным преимуществом экстрагирования является малая поверхность раздела и отсутствие кристаллической решетки. Таким образом избегают соосаждения, из-за которого реакции осаждения часто не приводят к полному количественному разделению ионов. [c.113]

    Для анализа газов применяют все три группы методов, рассмотренные в разделе о классификации методов количественного анализа. Для определения отдельных компонентов газовой смеси иногда применяют методы, основанные на измерении количества продукта реакции. Так, например, содержание СО, в смеси газов в некоторых случаях определяют следующим образом. Определенный объем газа пропускают через взвешенный поглотитель, содержащий едкую щелочь. При реакции образуется углекислая соль  [c.446]

    Применение. Процессы И. о. используют в аналит. химии и в пром-сти. С помощью И. о. концентрируют следовые кол-ва определяемых в-в, определяют суммарное солесодер-жание р-ров, удаляют мещающие анализу ионы, количественно разделяют компоненты сложных смесей (см. Ионообменная хроматография). И.о. применяют для получения умягченной и обессоленной воды (см. Водоподготовка) в тепловой и атомной энергетике, в электронной пром-сти в цветной металлургии-при комплексной гидрометаллургич. переработке бедных руд цветных, редких и благородных металлов в пищ. пром-сти - в произ-ве сахара, при переработке гидролизатов в мед. пром-сти-при получении антибиотиков и др. лек. ср-в, а также во мн. отраслях пром-сти-для очистки сточных вод в целях организации оборотного водоснабжения и извлечения ценных компонентов, очистки воздуха. Разрабатываются ионообменные методы комплексного извлечения из океанской воды ценных микрокомпонентов. [c.262]

    При анализе. многокомповентных систем необходимо строго контро-лироьать потенциалы разложения (и(деления) каждого компонента с достаточной точностью можно разделить и количественно выделить компоненты смеси, потенциалы выделения которых различаются не менее чем на 200 мВ.Введениеикомплекоообразуицшс реагентов можно значительно изменить потенциалы разложения. [c.45]

    При ХМС анализе идентификация компонентов анализируемых смесей осуществляется обычно по характеристическим ионам в масс спектрах и относительным индексам удерживания По лучение и того и другого вида данных сильно затрудняется, а часто становится вообще невозможным, если хроматографи ческие пики анализируемых компонентов не разделены Однако многомерный характер информации ХМС благодаря многока нальному детектированию дает возможность оценивать наличие нескольких компонентов в одном хроматографическом пике и осуществлять их раздельное определение (как качественное, так и количественное) не только в случае неполного разделе ния, но иногда и в случае полного перекрывания Если в масс спектрах неразделенных компонентов имеются специфические пики, характеризующие каждый из компонентов и отсутствующие [c.65]

    Теоретические основы и практические примеры гравиметрических методов детально рассмотрены в учебниках и монографиях [1-15], но в них не приводится единое определение метода. Так согласно [3] Гравиметрическим анализом называют метод количественного химического анализа, основанный на точном измерении массы определяемого вешества или его составных частей, выделяемых в виде соединений точно известного постоянного состава. Гравиметрические определения можно разделить на три группы методы отгонки, вьщеления и осаждения . Первые две группы немногочисленны и применяются для определения ограниченного крута компонентов, например, Бфи-сталлизационной воды, СОг и т.д. [c.389]

    Кулонометрические методы могут быть прямыми — когда определяемое вещество электролитически осаждается на электроде (снимается с него) или же окисляется (восстанавливается) непосредственно па электроде и затем удаляется с него в массу анализируемого раствора. Они могут быть косвенными — когда на рабочем электроде генерируется какой-либо промежуточный компонент, количественно реагирующий с определяемым веществом. В первом из указанных вариантов обычно контролируют потенциал рабочего (генераторного) электрода, во втором — силу тока, проходящего через электролитическую ячейку. По этой причине методы кулонометрического анализа разделяют на две большие группы — кулонометрию при контролируемом потенциале и куло-нометрию при постоянной силе тока (кулонометрические титрования). Оба варианта, имеющие одну и ту же принципиальную основу, различаются по аппаратурному оформлению, технике определений и в некоторых случаях но достигаемой точности. В обзоре (главы II—IV) результатов работ по кулонометрическому методу анализа, опубликованных в зарубежной и отечественной литературе, все описанные методы группируются по указанным выше признакам. [c.4]

    Многие из аналитических методов, перечисленных в таблицах к этой главе, являются неизбирательными. В связи с этим при анализе сложных смесей необходимо сначала разделить, компоненты образца на группы и только после этого проводить количественйое определение индивидуальных компонентов. Выбор метода разделения определяется типом анализируемого образца. В табл. 1.9 перечислены шесть основных методов разделения. Любая стадия разделения может служить источником ошибок эти ошибки будут вносить вклад в общую правильность и воспроизводимость химического анализа. В связи с этим правильный выбор метода разделения не менее важен, чем выбор метода конечного определения. [c.33]

    Очень эффективным методом анализа углеводородов оказался метод газовой хроматографии. В зарубежной литературе опубликованы работы по применению хроматографического метода для анализа галоидопроизводных углеводородов [2—6]. В работе Персиваля [7] приводятся количественные данные по разделению методом газо-жидкостной хроматографии двухкомпонентных смесей фреонов. Грин [8] разделял и количественно определял компоненты в смесях, содержащих фреон-13 (трифтор-хлорметан), фреон-12 (дифтордихлорметан), фреон-11 (фтортрихлорметан) и четыреххлористый углерод. Однако в случае анализа смесей, содержащих, наряду с фреоном-13, фреон-14 (тетрафторметан) и воздух, осуществить разделение двух последних компонентов на газо-жидкостной колонке невозможно, ввиду близких объемов удерживания. Келькер [9] для определения примесей низкокипящих газов во фреоне-12 применял в качестве адсорбента силикагель. Малые концентрации инертных газов, порядка 0,02% (по объему), можно определить с точностью от 1 до 3%. Однако в литературе не было работ по количественному анализу смесей, содержащих, наряду с фреоном-13, фреон-14 и воздух. [c.283]

    Тенлодинамический метод позволяет осуществить промежуточную ступень, соединяющую фронтальный анализ и термическую десорбцию, поско.льку он дает возможность предварительно увеличивать концентрации и разделять компоненты. Таким образом, целесообразно последовательное применение фронтального, тепло-динамического и термического методов. Возникает задача количественного анализа всех трех тактов процессов. [c.200]

    В методе газовой хроматографии заложены широчайшие возможности, поскольку при подборе соответствующих словий удается разделить и количественно онреде.лить большое число совместно присутствующих компонентов, содержания которых могз т различаться во много раз. Диапазон определяемых концентраций чрезвычайно широк от 10 до 100%. Время анализа в некоторых случаях составляет псс1 слы о секунд. Химическая природа анализируемых веществ не играет существенной роли, она лишь диктует выбор подходящего сорбента и способ регистрации разделяемых компонентов. Все это сделало газохроматографические методы мощным инструментом исследований. [c.130]

    Между магнитными свойствами и каталитической активностью, как правило, прямой связи не наблюдается. Ваншое исключение представляет превращение параводорода в ортоводород, катализируемое пара- или ферромагнитными поверхностями и атомарной адсорбцией водорода. Магнитные свойства катализаторов можно использовать для качественного и количественного определения присутствующих фаз и для определения структуры катализаторов. В литературе имеется обзор по магнитным методам изучения катализаторов [26]. В настоящем разделе описывается только термомагнитный анализ ферромагнитных компонентов катализаторов. [c.41]

    Схемы анализа с переключением колонок. Для проведения однозначной идентификации компонентов сложных смесей удобны многоступенчатые схемы с переключением колонок в процессе анализа. Возвратимся к рассмотренному в начале настоящего раздела примеру идентификации составляющих трехкомпонентной смеси. Можно показать, что если после разделения на колонке К1 перевести первую зону в колонку Кг, а вторую (содержащую компонент 3) удалить из системы, то регистратор, расположенный после второй колонки, запишет два пика, отвечающих компонентам 1 и 2, и, таким образом, идентификация (а при необходимости и количественный анализ) будет осуществлена. При анализе сложных смесей сначала обычно разделяют компоненты на колонке с неполярным сорбентом, а затем узкие фракции подаются на колонку второй ст шени для детального разделения. Схема может включать один или два детектора. [c.188]

    После проведения описанных выще аналитических процедур, которые фактически являются пробоподготовкой образца воды к собственно анализу, полученный концентрат подвергают окончательному разделению (см. табл. П.5) методом ВЭЖХ, включающим качественный и количественный анализ целевых компонентов (см. разделы 4 и 5). [c.152]

    Следует отметить, что применение ТСХ особенно эффективно для предварительного (по классам, группам, видам веществ) разделения компонентов сложных смесей органических загрязнений воды, воздуха и почвы. Это объясняется тем, что индивидуальная идентификация с помощью одной лищь ТСХ затруднена из-за отсутствия таких селективных и высокочувствительных детекторов, как ЭЗД, ТИД, ПФД, ХЛД, КУЛД и др., применяемых в газовой хроматографии (см. главу I), или электрохимических детекторов, используемых в ВЭЖХ (см. раздел 3). Поэтому прямая идентификация методом ТСХ обычно не позволяет добиться информативности выще 70—80%. Кроме того, специфика ТСХ (наличие пятен на пластинке) сильно затрудняет прямой количественный анализ целевых компонентов [2]. [c.192]

    КОЛИЧЕСТВЕННЫЙ АНАЛИЗ — раздел ана-литическои химии, в задачу к-рого входит определение количества (содержания) элементов (ионов), радикалов, функциональных групп, соединений или фаз в апализируемо.м объекте. В отличпе от качественного анализа, позволяющего установить, из каких хи.ми 1. элементов (ионов) или соединений состоит анализи-руе.мый материал, К. а. имеет целью установить )ле-ментарпый и молекулярный состав исследуемого объекта или содержание отдельных его компонентов. В тех случаях, когда неизвестно происхождение и качественный состав анализируемого. материала, количественному анализу всегда предшествует качественный. Вообще, уже качественное иснытание в какой-то мере ориентировочно позволяет оценить содержание компонента, нанр. по количеству осадка, интенсивности окраски. [c.320]

    Приведены [150] методы определения каучука и таблицы, содержащие описание поведения каучуков при сжигании, их растворимость в органических растворителях, цветные реакции и пробы на окрашивание под микроскопом. Имеется краткий обзор [223], в котором приведены важнейшие детали методов идентификации, применявшихся до 1945 г., и дан их критический анализ. Пожалуй, наиболее полно этот вопрос изложен в настоящее время в Users Memorandum [43], где приведены характеристики главных типов каучуков, а также схема систематического качественного анализа смесей. Для идентификации полимеров в смесях начинает применяться новая техника спектроскопия в инфракрасном и ультрафиолетовом свете и хроматография. Но так как эти методы оказались пригодными и для количественных определений, то они будут рассмотрены в разделе, посвященном количественному анализу каучуков. Такому вопросу, как определение наполнителей и других компонентов смесей, отведен особый раздел. [c.102]

    При изучении реакции алкилирования ацетиленом и его гомологами ароматических соединений, в частности фенолов , синтезированные дифенолы анализировали с помощью хроматографии в тонком слое окиси алюминия. Матовую стеклянную пластинку покрывали товарной хроматографической окисью алюминия в сухом виде (слой толщиной 0,5 мм, без применения фиксирующих средств). Дифенолы лучше всего разделялись элюэнтом, представляющим собой раствор этанола в бензоле в отношении 1 15. Хроматогргмму проявляли, используя пары иода. Для количественного определения компонентов был опробован метод измерения и сравнения площадей их пятен. Оказалось, что при хорошем разделении компонентов и при резких границах пятен этот метод расчета дает достаточно точные данные. Ошибка определения менее 6%. Этим методом были разделены дифенолы и их орто-пара-замещенные изомеры. Необходимо отметить, что в этой работе количество определяемого компонента было 10% и выше, поэтому о возможности применения метода для анализа микроколичеств судить трудно. [c.188]

    Асфальтены отделяют от битума, как описано выше, осаждением и фильтрованием, а мальтены разделяют на силикагеле элюированием изооктаном, бензолом и этанолом Вымываемые из хроматографической колонки соединения, растворенные в соответствующем растворителе, подаются на транспортирующую цепочку. Во время движения цепочки растворитель испаряется, а компоненты битума поступают в печь, где сгорают. Образовавшийся диоксид углерода регистрируется катарометром. Величина пика диоксида углерода позволяет судить о количестве соответствующего компонента битума. Принимая площадь всех пиков Пропорциональной общему содержанию мальтенов и учитывая количество предварительно выделенных асфальтенов, рассчитывают групповой химический состав битума. Как видно, количественная оценка группового химического состава по этому методу не связана с отбором больших объемов и высушиванием многочисленных фракций, что необходимо при традиционном анализе битума по коэффициенту преломления (или люминесценции). В результате этого продолжительность анализа маль тенов резко сокращается. Однако необходимость длительной (до-двух суток) операции по выделению асфальтенов из навее испытуемого образца по-прежнему остается. [c.9]

    Функция хроматографической колонки сводится лишь к разделе-иию смеси на индивидуальные компоненты. Определение их качественного и количественного состава может быть выполнено за пределами колонки. Существует два способа качественного анализа разделенной в хроматографической колонке смеси по характеристикам удерживания и с использованием других аналитических вриемов. [c.114]

    По своим задачам хроматография разделяется на аналитическую и препаративную. Аналитическая хроматография преследует цель констатировать наличие нескольких компонентов в анализируемой смеси, идентифицировать эти компоненты (или убедиться, что какие-то из них не соответствуют никакому из ранее исследованных химических соединений) и количественно определить содержание каждого из них. При аналитической хроматографии можно для обнаружения веществ на выходе из колонки, в тонком слое или на бумаге превратить их в какие-либо другие, легче обнаруживаемые вещества. Например, при анализе аминокислотного состава белков на выходе из колонки к бесцветному раствору, вытекающему из колонки, добавляют специальное вещество — нингидрин, которое превращет аминокислоты в синий краситель. В результате этого зоны, содержащие разделенные аминокислоты, выходят в виде окрашенного раствора, измерение оптической плотности которого позволяет определить содержание красителя, а значит, и исходное содержание аминокислоты в каждой зоне. [c.343]


Смотреть страницы где упоминается термин Анализ разделяемых компонентов количественный: [c.4]    [c.371]    [c.195]    [c.68]    [c.320]    [c.393]    [c.131]   
Руководство по газовой хроматографии (1969) -- [ c.138 , c.284 , c.310 , c.355 , c.421 , c.429 ]

Руководство по газовой хроматографии (1969) -- [ c.138 , c.284 , c.310 , c.355 , c.421 , c.429 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ количественный



© 2025 chem21.info Реклама на сайте