Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризационная характеристика,

    Только в случае коррозионных пар, имеющих достаточную большую протяженность (например, почвенная коррозия трубопроводов, коррозия под действием контакта в трубе и т. п.), приходится наряду с поляризационными характеристиками катода и анода учитывать также и омический фактор. Зная величину омического сопротивления коррозионных элементов, можно решать количественные вопросы о соотношении между торможением процесса коррозии омическим фактором и ранее рассмотренным анодным и катодным торможением, т. е. о соотношении между омическим, анодным и катодным контролем процесса. [c.53]


    ПОЛЯРИЗАЦИОННАЯ ХАРАКТЕРИСТИКА В УСЛОВИЯХ ЛИМИТИРУЮЩЕЙ СТАДИИ МАССОПЕРЕНОСА [c.172]

    Соотношение токов обмена и Гр определяется положением уровня Ферми в полупроводнике и равновесным потенциалом (Е ) окислительно-восстановительной системы. При этом ток оказывается тем больше, чем более отрицательное значение имеет Е и чем ближе к зоне проводимости располагается уровень Ферми. Последний эффект достигается введением в полупроводник доноров электронов (например, введением примеси Аз в Ое). Введение в полупроводник примесей акцепторов, наоборот, приводит к росту д и уменьшению 1%. Таким образом поляризационная характеристика для реакции (I) на полупроводниковом электроде оказывается весьма сложной и зависяш,ей от многих факторов. Ограничимся поэтому рассмотрением упрощенного случая, когда Д ф 0, и При этих условиях из уравнения (57.10) получаем [c.295]

    Так как величина Вс—Вр кТ, а е >Вс, то е —Вр кТ и в согласии с формулой (55.4) п(е ) 1. В обычных условиях третье слагаемое в уравнении (57.16) также мало по сравнению с единицей, а потому а 1, что согласуется с уравнением (57.14). Однако в условиях малых энергий реорганизации растворителя третье слагаемое в уравнении (57.16) возрастает, что может привести к отрицательным значениям а, т. е. к возникновению падающих ветвей электронного тока на поляризационных характеристиках полупроводниковых электродов. [c.296]

    Общий путь нахождения поляризационной характеристики в условиях диффузионной кинетики состоит в следующем. Исходным служит уравнение (УИ1.6) или система такого рода уравнений, записанная для различных компонентов г. Для решения каждого из таких уравнений необходимо задать одно начальное и два граничных условия, которые определяются способом проведения эксперимента. Так, например, задавая при помощи специального электронного прибора — потенциостата — импульс потенциала в соответствии, с уравнениями (УИ1.3) или (УП1.4), контролируют зависимость поверхностной концентрации С (х=0) от времени. Другое граничное условие, соответствующее х- оо, определяется заданными объемными концентрациями реагирующих веществ с . В результате решения уравнения (УИ1.6) получают зависимость с, (х, /). Дифференцированием этой зависимости по л находят градиент концентрации дс дх, а затем его частное значение у поверхности электрода ( С /бх) =о. После этого по уравнению (УИ1.2) можно рассчитать плотность тока I. С другой стороны, из частного значения функции С (х, 1) при л =0, используя уравнение (УП1.3) или (УН 1.4) (в зависимости от типа электродного процесса), рассчитывают потенциал электрода Е, соответствующий току I. Таким образом, устанавливается связь между током и потенциалом, т. е. поляризационная кривая. В ряде наиболее простых случаев зависимость г от Е можно получить в аналитическом виде, но для более сложных граничных условий связь между током и потенциалом получается в параметрическом или графическом виде. [c.174]


    Трудности изучения стадии разряда — ионизации обусловлены тем, что эта стадия сопровождается процессами массопереноса реагирующих веществ и продуктов реакции, которые отражаются на форме поляризационной характеристики. Таким образом, возникает задача внесения поправок на концентрационную поляризацию. [c.191]

    Чтобы рассчитать поляризационные характеристики электровосстановления анионов при сочетании стадии диффу- [c.200]

    Т. е. вблизи равновесного потенциала поляризационная характеристика линейна. При больших анодных перенапряжениях анодный ток достигает предельной величины 4, которая определяется природой химической реакции и состоянием поверхности электрода и не зависит [c.205]

    Для определения тока саморастворения удобно поляризационные характеристики протекающих на электроде процессов представлять в полулогарифмических координатах (рис. 92). Координаты точки пересечения поляризационных кривых, соответствующих эффективным скоростям растворения металла (—г,) и выделения водорода ( а), отвечают 1 и Е . [c.211]

    VI 11.2. Поляризационная характеристика в условиях лимитирующей стадии массопереноса [c.203]

    Метод поляризационных кривых оказывается достаточно информативным при изучении электрохимических процессов, осложненных химическими превращениями вблизи электрода или на его поверхности. В этом случае параметры поляризационных кривых существенно отличаются от параметров, характерных для обратимых или необратимых электрохимических процессов, не включающих химических стадий. Влияние химических реакций на поляризационные характеристики зависит от их места в общей последовательности реакционных стадий, порядка реакции, величины константы скорости и может быть многоплановым оно сказывается на количестве, форме и высоте волн, числе участвующих в реакции электронов, на диффузионном, кинетическом или каталитическом характере волн, на величинах потенциалов полуволны и их зависимости от условий эксперимента. Сопоставляя экспериментальные поляризационные характеристики с теоретически рассчитанными для различных механизмов процесса, можно сделать важные выводы относительно пути реакции и ее механизма. [c.195]

    Различные случаи воздействия химических реакций на поляризационные характеристики соответствующих процессов и состав конечных и промежуточных продуктов электролиза рассмотрены в следующей главе. [c.196]

    Осуществление двух параллельных замедленных процессов превращения анион-радикалов, теоретически проанализированное С. Г. Майрановским, естественно сказывается на поляризационных характеристиках второй волны восстановления упомянутых соединений меняется форма волны, в зависимости ог изменения различных кинетических параметров наблюдается сдвиг ее потенциала полуволны /2. [c.256]

    Таким образом, закономерности процесса каталитического выделения водорода наглядно демонстрируют воздействие на поляризационные характеристики электродной реакции самых различных факторов природы лимитирующей стадии, гомогенного или гетерогенного характера протолитической реакции (7.69), pH раствора, концентрации катализатора в растворе и его адсорбционной способности, параметров двойного электрического слоя. [c.262]

    Т. е. вблизи равновесного потенциала поляризационная характеристика линейна. При больших анодных перенапряжениях анодный ток достигает предельной величины , которая определяется природой химической реакции и состоянием поверхности электрода и не зависит от скорости размешивания раствора. Если медленная гетерогенная химическая реакция предшествует стадии разряда, то в таких условиях предельный кинетический ток, равный г о, должен наблюдаться на катодной поляризационной кривой, а анодная кривая должна удовлетворять тафелевской зависимости (Vni.97). [c.244]

    Главное требование к проведению исследований — постоянный контакт испытуемой среды с контрольным образцом при движении (перемешивании). Схема установки для исследования сред, насыщенных сероводородом или кислородом, приведена на рис. 121. Установка [7] состоит из двухколенного циркуляционного сосуда, в правой измерительной части которого помещают исследуемый и вспомогательный электроды. Здесь же на капроновой нити подвешивают металлические образцы. В левой смесительной части помещают мешалку с электродвигателем и устройство для ввода в исследуемую среду сероводорода или кислорода. Левую и правую части герметизируют при помощи гидрозатвора. Исследуемые образцы, изготовленные из стальной ленты марки 08 КП или стали 3 КП, подвергают воздействию среды с ингибитором в течение 6 ч. Установка позволяет снимать поляризационную характеристику в гальваностатиче-ском пли потенциостатическом режиме. Для этого она, помимо основных электродов, снабжена электродом сравнения и вспомогательным электродом, при помощи которых замеряют величины дифференциальной емкости и сопротивление на границе раздела металл — электролит. Изменения могут быть с наложением и без наложения внешнего электрического поля. [c.214]

    Под действием электрического поля волны молекулы в частице дисперсной фазы приобретают преимущественную ориентацию в пространстве. В то же время тепловое движение молекул дисперсионной среды стремится их разориентировать. Поступательная комтонента броуновского движения не оказывает никакого влияния на поляризационные характеристики свечения. Вращательное броуновское движение вызывает деполяризацию свечения. Молекулы в частице поглощают падающее излучение практически мгновенно, переходя в возбужденное состояние. В возбужденном состоянии они находятся в течение некоторого времени, называемом средней продолжительностью жизни возбужденного состояния. Затем происходит высвечивание. Именно за период пока молекулы возбуждены происходит поворот час-Т1ЩЫ на некоторый угол. Вращательная деполяризация флуоресценции определяется параметра.ми, характеризующими саму частицу, т. е. объемом и средней длительностью возбужденного состояния и величинами, характеризующими дисперсионную среду, т. е. вязкостью и температурой. [c.97]


    Можно вести электролиз на предельной силе тока. Для установления потенциала, отвечающего протеканию предельного тока необходимо предварительно получить поляризационную характеристику ( — -зависимость) для анализируемого раствора. Поскольку сила предельного тока пропорциональна концентрации, то по мере протекания электролиза регистрируемая сила тока будет падать (Е = onst по условию) в соответствии с убылью концентрации вещества в растворе. Падение силы тока описывается уравнением  [c.254]

    Еу=1 эВ условие (57.17) принимает вид > <1240 нм. Таким образом, освещение полупроводникового электрода видимым светом может привести и действительно приводит к изменению поляризационной характеристики полупроводникового электрода. Фотоэлектрохимиче-ские эффекты широко используются при изучении полупроводниковых электродов. [c.296]

    Таким образом, при малых перенапряжениях поляризационная характеристика электродного процесса, лимитируемого стадией разряда — ионизации, линейна. Соотношение (VIII.50) внешне аналогично закону Ома. Величина [c.189]

    Если o 5i=0, TO зависимость In i от —E отвечает уравнению Тафеля. Приа з1<0 ( <0) для2q<0 из уравнения (VIII.78) следует, что скорость реакции меньше, чем при 1ji=0. При il)i>0 (< >0) скорость реакции больше, чем при i[3i=0. Семейство поляризационных характеристик электровосстановления аниона с 2о=—2 в присутствии различных концентраций поверхностно-неактивного 1,1-валентного электролита, которые рассчитаны по уравнению (VIII.78), представлено на рис.88 Координатами общей точки всех кривых являются и [c.200]

    Правильность представления о коррозионном процессе как о совокупности электрохимических сопряженных реакций можно проверить, если определить ток саморастворения из поляризационных характеристик соответствующих реакций и сопоставить его с прямыми определениями с по убыли массы металла (гравиметрический метод изучения коррозии), по скорости выделения водорода (волюмометриче-ский метод), по изменению концентрации ионов металла в растворе или другими методами. Для многих систем получено количественное [c.211]

    Защита металлов от коррозии может быть основана на явлении пассивности, которое состоит в том, что по достижении определенного значения потенциала скорость анодного растворения металла резко падает. Металл переходит в так называемое пассивное состояние, характеризуемое незначительными скоростями растворения. Типичная поляризационная характеристика пассивирующегося металла [c.214]

    Абсолютная разность E — =о складывается, во-первых, из омического падения напряжения внутри электрохимической ячейки (между катодом и анодом) ом=/- цепи (Рцепи — внутреннее сопротивление цепи), и, во-вторых, из поляризаций катода АЕц и анода АЕл. Поляризация каждого из электродов представляет собой изменение гальвани-пвтенциала на границе электрод — раствор по сравнению с его равновесным значением, вызванное прохождением электрического тока. Электрический ток, в свою очередь, связан с протеканием электродного процесса (фарадеев-ский ток) и с заряжением двойного слоя (ток заряжения). Если свойства поверхностного слоя не изменяются во времени, то протекающий через электрод ток определяется только скоростью самого электродного процесса и размерами электрода. В этих условиях плотность тока i=l/s (s — поверхность электрода) служит мерой скорости электрохимической реакции. Поляризация электрода обусловлена конечной скоростью электрохимического процесса, а потому она является некоторой функцией плотности тока AE AE(i). Функциональная зависимость АЕ от i (или i от АЕ) называется поляризационной характеристикой. Задача электрохимической кинетики заключается в установлении общих закономерностей, которым подчиняются поляризационные характеристики, с целью регулирования скорости электродных процессов. Эта задача чрезвычайно важна, поскольку уменьшение поляризации при заданной плотности тока позволяет существенно повысить КПД использования электрохимических систем. [c.201]

    Чтобы рассчитать поляризационные характеристики электровосстановления анионов при сочетании стадии диффузии и стадии разряда, т. е. кривые, подобные приведенным на рис. VIII.20, необходимо воспользоваться уравнениями (VIII.69) и (VIII.83)  [c.238]

    Защита металлов от коррозии может быть основана на явлении пассивности, которое состоит в том, что по достижении определенного значения потенциала скорость анодного растворения металла резко падает. Металл переходит в так называемое пассивное состояние, характеризуемое незначительными скоростями растворения. Типичная поляризационная характеристика пассивирующегося металла показана на рис. IX. 6. Подъем тока при значительных анодных поляризациях обычно связан с выделением кислорода .  [c.258]

    Любая электрохимическая реакция протекает на поверхности раздела фаз электрод — раствор и является гетерогенной. Как гетерогенная химическая реакция она также является стадийной, текущей через ряд последовательных стадий 1) транспорт вещества к электроду — к зоне реакции 2) собственный электрохимический акт взаимодействия реагирующей частицы с электродом (стадия разряда — ионизация) 3) отвод образовавшихся продуктов реакции от поверхности электрода. Первая и третья стадии имеют одни и те же закономерности и. чазываются стадиями мас-сопереноса, осуществляемыми за счет малых коэффициентов миграции и конвекции. Для всех электродных процессов наличие этих трех стадий обязательно. Однако наряду с этим ряд электрохимических процессов может осложняться предшествующими и последующими химическими реакциями, протекающими в объеме раствора или на поверхности электрода. Кроме того, в ходе электрохимической реа1 ции может происходить передвижение частиц по поверхности электрода (стадия поверхностной диффузии). Скорость электрохимического процесса, состоящего из ряда последовательных стадий, определяется наиболее замедленной, лимитирующей стадией. Для установления природы лимитирующей стадии, скорости ее течения, механизма электродного процесса, необходимо знать закономерности, которым подчиняются поляризационные характеристики / и Л . [c.458]


Смотреть страницы где упоминается термин Поляризационная характеристика,: [c.293]    [c.55]    [c.170]    [c.191]    [c.200]    [c.219]    [c.248]    [c.205]    [c.233]    [c.206]    [c.225]    [c.237]    [c.238]    [c.249]   
Химический энциклопедический словарь (1983) -- [ c.0 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте