Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потери энергии

    В основе системного анализа лежит декомпозиция сложной системы (явления, химико-технологического процесса и т. д.) на от-дельные подсистемы й установление количественных связей между ними. Выделение подсистем (уровней) определяется не только сложностью рассматриваемого объекта, но и степенью изученности данного уровня и наличием математического описания. Рассматривая независимо каждую из подсистем с входными и выходными потоками (энергии, массы, импульса и т. д.) и оценивая потенциал этих потоков, можно выявить источники и стоки, определить допустимые по некоторому критерию потери, а также выявить резервы повышения эффективности отдельных аппаратов и схемы в целом. Например, эксергетический (термодинамический), анализ элементов технологической схемы позволяет не только выявить возможности вторичного использования энергии, но и определить оптимальный энергетический уровень схемы, обеспечивающий минимальные потери энергии в окружающую среду. [c.74]


    Под бесконтактными жидкостными уплотнениями понимают устройства, уплотняющее действие которых достигается в результате потерь энергии при движении жидкости в каналах, образованных элементами уплотнения, имеющими неподвижные и подвижные поверхности. Бесконтактные уплотнения применяют для герметизации вращающихся валов перемешивающих устройств вертикальных аппаратов при окружной скорости вала до 40 м/с, рабочей температуре жидкости от —180 до 350°С и кинематической вязкости 1 10 м7с. [c.244]

    Более детальный термодинамический анализ процесса разделения с учетом всех необратимых потерь энергии показывает, что приведенные схемы имеют одинаковую эффективность. На практи- [c.302]

    Из-за низкой эффективности процесса ректификации постоянно ведутся исследования по снижению энергопотребления как отдельных ректификационных установок, так и систем разделения. Основными направлениями таких исследований являются термодинамический анализ ректификации с целью снижения потерь энергии за счет необратимости усовершенствование промышленных процессов с целью более рационального использования энергии потоков внутри установки поиск других способов получения чистых продуктов, более экономичных, чем ректификация применение совмещенных процессов с целью более ра- [c.483]

    Возрастание объемной теплоты сгорания связано с обязательным ростом его плотности и даст преимущества лишь в том случае, если эффект от повышения теплоты сгорания будет превышать потери энергии, которую необходимо дополнительно затратить вследствие увеличения полетной массы самолета, загруженного таким же объемом топлива, но имеющего большую плотность. [c.29]

    Возможности технического совершенствования двигателя находятся в прямой зависимости от функциональных свойств моторного масла. Современные смазочные материалы способны длительное время выдерживать высокие механические и термические нагрузки, защищать от износа, коррозии и образования отложений, нарушающих нормальную работу агрегата и обеспечивать снижение потерь энергии. [c.23]

    Новые исследования показали, что в автомобиле потери энергии от трения распределяются следующим образом  [c.51]

    При повышении вязкости жидкости увеличиваются необратимые потери энергии на внутреннее трение. По этой причине коэффициент расхода увеличивается, а угол конуса 2а уменьшается. [c.80]

    Скорость движения ударной волны в нереагирующем газе постепенно затухает за счет потерь энергии на теплоотдачу горячего газа стенкам трубы и за счет трения газа о стенки. [c.141]

    Регулирование перепуском сжатого газа с нагнетания па всасывание или выпуском в атмосферу связано со значительной потерей. энергии и крайне неэкономично. Однако вследствие простоты конструкции регулирующего запорного органа этот способ широко применяется в промышленности. [c.219]

    Скорость цепной реакции пропорциональна концентрациям носителя цепи, и на нее прямо влияют скорости образования и разрушения этих носителей. Теоретически цепная реакция может быть ускорена без повышения температуры. Если одна из ступеней реакции дает более одного носителя, цепь разветвляется и скорость реакции обычно возрастает иногда до взрывной. Этого может и не произойти по ряду причин, одной из которых может явиться взаимодействие радикалов со стенкой сосуда, в результате которого происходит потеря энергии. [c.474]


    Таким образом, потоки заряженных частиц производят ионизацию и возбуждение молекул облучаемого вещества при столкновениях, а при облучении нейтральными частицами или фотонами в,основном первоначально образуются заряженные частицы, которые далее осуществляют ионизацию и возбуждение молекул. При этом число ионизаций (и возбуждений), производимых вторичными заряженными частицами на своем пути, значительно больще ионизирующей способности первичной (нейтральной) частицы. Потеря энергии ионизирующими частицами носит дискретный характер, вследствие чего в веществе образуются микрообласти с высокой плотностью поглощения энергии. [c.107]

    Стабильная молекула может образоваться в результате столкновения двух атомов или радикалов только в том случае, если некоторое количество энергии, не меньшее, чем суммарная кинетическая энергия сталкивающихся частиц, теряется в результате излучения или при столкновении с третьей частицей (роль которой может играть и поверхность твердого тела). Если потери энергии не будет, то молекула, возникшая в результате столкновения, после одного колебания разрушится, так как выделяющаяся при образовании связи энергия останется в возникшей молекуле, а ее достаточно, чтобы разорвать возникшую связь. Кроме того, возникающая молекула будет обладать и кинетической энергией сталкивающихся частиц, которая после разрыва связи вновь перейдет в кинетическую энергию поступательного движения образовавшихся осколков (атомов или радикалов). [c.85]

    Взаимодействие молекул друг с другом п со степкам сосуда проявляется только в виде толчка при соударении. Эти соударения являются упругими, т.е. не сопровождаются потерями энергии на трение. [c.134]

    Наиболее важной характеристикой всех материалов при изготовлении ядерных мембран является порог регистрации — величина вносимой в материал радиационной энергии, при которой различие скоростей травления деструктированного и основного материала достаточно для выявления трека. Порог регистрации равен максимальной потере энергии наиболее легкого иона, с помощью которого можно получить достаточно отчетливые треки в облучаемом материале. Для некоторых материалов пороги регистрации указаны в табл. 11,2. Из этой [c.54]

    Коэффициент сопротивления (потеря энергии) [c.52]

    Коэффициент сопротивления (потери энергии) [c.52]

    Невосполнимые потери энергии при пересечении решетки в ускоренной струйке получаются [больше, чем в замедленной. Вследствие этого по-сечению за решеткой происходит выравнивание не только скоростей, но и полной энергии потока. [c.80]

    Соловьев П. Н. Исследование потерь энергии на преодоление механического трения в поршневом компрессоре. Научно-технический информа-220 [c.220]

    Использование водорода имеет большие перспективы. Водород может служить универсальным источником энергии, получаемой как при непосредственном его сжигании, так и в топливных элементах. Подсчитано, что энергетические затраты на перекачивание водорода по трубопроводам меньше, чем потери энергии в линиях электропередачи. При сгорании водорода образуется только вода и атмосфера остается чистой. Водород с успехом может быть использован как топливо для автотранспорта и в авиации. В настоящее время разрабатываются различные варианты водородной [c.467]

    Характер взаимодействия ионизирующего излучения е веществом определяется параметрами частиц и свойствами вещества. При взаимодействии заряженных частиц со средой основной причиной потерь энергии являются столкновения с атомами (электронами и ядрами), приводящие к ионизации и многократным рассеяниям. Потеря энергии электронами происходит также в результате радиационного торможения, а для тяжелых частиц (протон, а-частица) - потенциального рассеяния на ядрах и ядерных реакций. При взаимодействии 7-излуче ния со средой потеря энергии объясняется Комптон-эффектом (рассеяние 7-кванта на электронах), фотоэффектом (поглощение у-кванта с передачей энергии электрону), образованием электронно-позитронных пар (при энергиях V-квантов 1,02 МэВ) и ядерных реакций (при 10 МэВ). [c.107]

    В первом случае смазка будет выдавлена при вращении или скольжении поверхностей, во втором — слой ее останется между ними. Такие вещества, как тальк и графит, прилипание которых к трущимся поверхностям равно нулю, не являются настоящей смазкой и приобретают ценные свойства как только к ним будет прибавлено вещество, смачивающее и эти порошки, и поверхность металла. Идеальное смазочное вещество должно обладать возможна меньшим внутренним трением и возможно большей способностью к прилипанию. Таких веществ, вообще товоря, не существует, в осо. бенности среди нефтяных продуктов, в которых опособность к прилипанию растет не так быстро, как вязкость. Это вынуждает пользоваться очень вязкими маслами тогда, когда вязкость сама по себе не только не является полезной, но даже вредной, так как внутреннее трение густого масла поглощает часть энергии. Чем солиднее механизм и чем больше действуюпще в нем силы, тем меньшим процентом, считая на конечный эффект, ложится эта потеря энергии. С этой же целью для легких механизмов употребляют главным образом подвижные смазочные масла (костяное, веретенное и т. д.), и наконец, где важно, чтобы потеря энергии на преодоление внутреннего трения масла была равна нулю, как, напр., в чувствительных весах, обходятся вовсе без смазки. [c.223]

    Эти потери энергии в потоке возникают с каждым всплывающим вихрем. [c.114]

    Вязкость vis osity). Вязкость - это внутреннее трение или сопротивление течению жидкости. Вязкость масла, во-первых, является показателем его смазывающих свойств, так как от вязкости масла зависит качество смазывания, распределение масла на поверхностях трения и, тем самым, износ деталей. Во-вторых, от вязкости зависят потери энергии при работе двигателя и других агрегатов. Вязкость - основная характеристика масла, по величине которой частично делается выбор масла для применения в конкретном случае. [c.42]


    Примером может служить ХТС с так называемым агрегатом двигатель — насос — турбина (рис. 1-10). Газ под давлением поступает-в нижнюю часть колонны и контактирует с орошающей ее жидкостью. При этом газ выходит из колонны сверху, а жидкость снизу. Рядом с колонной расположен агрегат двигатель — насос — турбина, в котором двигатель, колесо турбины и рабочие колеса многоступенчатого насоса имеют общий вал. Насос подает жидкость на орошение колонны. Жидкость, вытекающая из нее и находящаяся под давлением, попадает на лопатки турбины, вращает колесо турбины и теряет энергию. Поскольку колеса турбины и насоса находятся на одном валу, энергия жидкости используется для работы насоса, т. е. для подачи жидкости на орошение колонны. Потери энергии компенсируются питанием электрической энергией двигателя. Аналогично используется энергия сжатых газов. [c.29]

    С технологической точки зрения растянутость коммуникаций приводит к потерям энергии, излишним затратам на коммуникации и снижает общую надежность схемы. [c.203]

    Таким образом, ТВ-элемент допускает потери энергии или любой другой субстанции, и для него в общем случае соотношение [c.46]

    Это значит, что на 0-структуре выполняется закон сохранения субстанции, т. е. нет потери энергии, массы, импульса и т. д. [c.49]

    Для уменьщения износа и увеличения липкости, в масло вводятся противоизносные присадки anti-wear additives) - жирные спирты, амиды, сложные эфиры, соединения фосфора и др., образующие химическую связь с поверхностью металла. При помощи таких присадок улучшается липкость даже при низкой вязкости масла. Чем больше прочность образованной пленки и чем сильнее она связана с поверхностью металла, тем меньше может быть вязкость масла для достижения такого же смазывающего эффекта и уменьшения износа деталей, а с применением менее вязкого масла снижаются потери энергии на прокачиваемость. [c.28]

    Однако, полагая, что потери энергии на трение в пневмопроводе и движущихся частях исполнительного механизма незначительны, а влияние надмембранного объема на качество регулирования несущественно, можно упростить диаграмму связи исполнительного механизма  [c.246]

    Непрерывный поток газа, подаваемый снизу аппарата, отдает свою кинетическую энергию на создание и поддержание движения слоя материала в аппарате, на компенсацию потерь энергии вследствие трения частиц друг о друга, о стенки аппарата и на расширение слоя. Поэтому перепад давления газа в слое является его важной гидродинамической характеристикой. В настоящее время [c.255]

    Задача 9.4. В технике широко используют червячные передачи. Их недостаток — нельзя получить высокие Лередаточные числа в одной ступени (а много ступеней — громоздко и большие потери на трение). Чтобы получить высокое передаточное число, надо уменьшить угол подъема нитки червяка, а при малых углах подъема червячная передача работает плохо — растут потери на трение. В справочнике И. И. Артоболевского Механизмы в современной технике (1980, т. 4, с. 425—454) приведены схемы различных червячных механизма, причем не раз повторяется предупреждение Передача возможна только при достаточно большом угле подъема нитки червяка... Физическое противоречие упсм подъема нитки червяка должен быть как можно меньше, чтобы обеспечить высокое передаточное число (10 ООО, 100 ООО, 1 ООО ООО), и должен быть как можно больше, чтобы передача работала надежно и с малыми потерями энергии. [c.164]

    Курочкин А. К., Бадиков Ю. В. Пути повышения эффективности гидроакустических аппаратов роторного типа. 1. Режимы работы аппаратов роторного типа. Пути уменьшения потерь энергии // Новое в области разработки гербицидов Сб. — Уфа ВНИТИГ, [c.194]

    Снижение потерь энергии на трение в двигателе на 50 %, может позволить сэкономить 3 - 17 % топлива, а при подобном снижении потерь в трансмиссии - экономия топлива может сотавлять 1,8 - 5,5 %.  [c.51]

    Аналогично, если материал может быть измельчен в шаровой мельнице так, что 907о зерен будет иметь диаметр меньше 0,01 мм, то после некоторого периода проведения процесса половина материала достигает уже заданной степени измельчения и может быть изъята из мельницы. Сохранение этой Части материала в мельнице приведет к ненужному дальнейшему измельчению и, следовательно, к напрасному расходу энергии. Соединение мельницы с устройством, отделяющим недоизмельченные куски (например, с ситом, классификатором или воздушным сепаратором), дает возможность избежать излишних потерь энергии (рис. 1Х-61). [c.406]

    Прохождение всех видов излучений через вещество приводит в итоге к потере энергии частицами и квантами. До тех пор, пока энергия частиц и квантов больше энергии ионизации молекул и атомов, она растрачивается в основном на ионизацию последних. [c.259]

    При фотохимическом возбуждении новые энергетические уро1 ни могут различаться спинами электронов. Состояния с пара лельными спинами (триплеты) имеют более низкую энергию, че состояния с антипараллельными спинами (синглеты). При возбу дении молекулы атомом сенсибилизатора выполняется правил Вигнера, по которому перенос энергии между возбужденной част цей и молекулой в основном состоянии разрешен только при сохр нении полного спина системы. Работы Лейдлера показали, чт правило сохранения спина позволяет объяснить характер ряд фотохимических реакций углеводородов. Основное состояние ол( фина с заполненной я-орбиталью (спины антипараллельны) — си1 глет возбуждение в триплетное состояние представляет собой з прещенный переход. Не следует понимать это как отсутствие во бужденных триплетных состояний, но такие молекулы будут обр зовываться при безизлучательной потере энергии возбужденным синглетными молекулами. [c.66]

    Все зазоры кольцевых пространств оросителя имеют одинаковую ширину. Ороситель надежно обеспечивает полное смачивание торца насадки, обычно создавая на нем убывающее от центра к периферии распределение плотности орошения I (см. схему 3 иа рис. 19) как при пониженных (( = 80- -100 мVч), так и больших (Q=-= 100 800 М 7ч) расхода жидкости. Недостатком этой конструкции является применение излишне больших конусов (особенно верхних), что приводит к повышенным потерям энергии струй на конусе и заметно снижает дальность нх полета [60]. Сварка для соединения патрубков оросителя тонкими пластинчатыми ребрами затруднительна и часто приводит к образованию трудно удаляемых наплывов металла внутри кольцевых каиа- 10в, что препятствует симметричному обтеканию конусов. [c.129]

    Вязкость растяжителя должна быть-низкой,, потому что, чем ниже вязкость, тем легче проходит растворение. Кроме того вязкость растворителя создает бесполезное трение, которое препятствует прохождению газов и вызывает потерю энергии на насосах. [c.141]

    При расчете затрат энергии на перекачивание необходимо учитывать, что мощность УУдв, потребляемая двигателем от сети, больше номинальной вследствие потерь энергии в самом двигателе  [c.12]

    При рассмотрении свободных колебаний мы допустили, что последние происходят при отсутствии каких бы то ни было причин, препятствующих движению, т. е. поглощающих энергию колеблющихся систем. Между тем очевидно, что такие причины всегда имеют место. Таковы, напримс ), сопротивление среды, трение в опорах, трение внутри самого материала (вязкость), вследствие которых часть энергии деформации превращается в тепло. Так как свободное колебание происходит без притока энергии извне, а причины, вызывающие потери энергии, действуют постоянно, то, очевидно, амплитуды колебаний с течением времени должны уменьшаться до тех пор, пока, наконец, по истечении более или менее продолжительного отрезка времени, колебание пе прекратится. Колебания описанного типа называются затухающими. Силы, являющиеся причииоГ потери энергии, ее рассеяния, называются диссипативными (рассеивающими) силами. [c.536]

    Отличительной особенностью химических производств как непрерывных процессов является вероятностно-стохастическая природа их протекания. Химическое превращение, теплол1ассообмен зависят от внутреннего состояния объекта и внешних условий. Поэтому для повышения эффективности производства необходимо обеспечить оптимальные режимы протекания отдельных процессов и благоприятные внешние условия. От того, насколько правильно организовано взаимодействие объекта с внешней средой, будут зависеть потери энергии, массы и в конечном итоге эффективность производства. При интенсивном росте промышленного производства, увеличении единичной мощности возрастание таких потерь уже приводит к заметным экологическим последствиям. [c.73]

    При проектировании ректификационных установок проблема поиска оптимального решения связана с установлением баланса между капитальными и эксплуатационными расходами в терминах экономического критерия. Хотя экономические критерии не позволяют выявить путей снижения энергии на ведение процесса (в отличие, например, от термодинамического), они широко испольауются в практике проектирования как удобный способ сравнительной оценки вариантов проекта. Речь идет о выявлении новых способов снижения потерь энергии. Такие возможности могут быть выявлены в результате исследования самого процесса. В рамках же известных способов экономические критерии позволяют отыскать оптимальное решение. [c.318]

    Термодинамический метод синтеза теплообменных систем [16]. Анализ процессов химической технологии на основе первого закона термодинамики находит широкое практическое применение. Наряду с этим все большее распространение получают методы анализа на основе второго начала термодинамики, в частности (используемые исходя из концепции эксергии как меры превратп-мости энергии), при оптимизации и проектировании технологических производств (см. гл. 7). Привлекательность этих методов заключается в том, что имеется возмо кность оценить в общем случае минимально возмо кные потери энергии за счет необратимости процесса и тем самым определить реальные перспективы совершенствования процесса. Развитие этих термодинамических методов идет по пути получения количественной информации о совершенстве протекания отдельных явлений. Что касается качественных выводов, то они хорошо известны. Например, потери превратимой энергии отсутствуют при смешении потоков, находящихся в термодинамическом равновесии, или потери энергии в противоточном теплообменнике выше, чем в прямоточном, равно как с увеличением поверхности теплообмзна потери за счет необратимости нроцесса снижаются. [c.466]

    Сосредоточенный ввод жидкости вызывает образование также кольцевого вихря с осью кольца, совпадающей с осью основного вихря. Образование дополнительных вихрей в объеме гид-роциклона приводит к довольно сложному их взаимодействию между собой и с основным вихрем, что обусловливает дополнительные потери энергии и уменьшение интенсивности основного вихря. В открытых гидроциклонах вредное влияние дополнительных вихрей может быть значительно уменьшено подбором соотношения диаметров корпуса гидроциклона и патрубка для отвода осветленной жидкости, а также заглублением последнего. Отчасти на это же направлены и различные варианты выполнения формы корпуса (биконические, сферические и др.). [c.60]

    Выделим в области выходного патрубка с внутренней стороны бака некоторую поверхность (см. рис. 2.26) площадью (причем 81 82) так, чтобы на ней скорость движения жидкости была близка к нулю при давлении, практически равном При этом можно считать, что разность давлений АР Р — Р расходуется в основном на придание жидкости ненулевой скорости в устье со стороны отводной трубы, т. е. в соответствии с уравнением Бернулли для участка между поверхностями д и 82 можно принять АР = pQl/28l, что в терминах диаграмм связи эквивалентно сочетанию 1-структуры с Кв-диссипативным элементом (так называемым бернуллиевым Кв-элементом), отражающим потери энергии на создание динамического напора  [c.177]


Смотреть страницы где упоминается термин Потери энергии: [c.145]    [c.317]    [c.350]    [c.92]    [c.93]   
Смотреть главы в:

Гидравлические турбины и насосы -> Потери энергии

Новый справочник химика и технолога Радиоактивные вещества -> Потери энергии


Гидравлические машины. Турбины и насосы (1978) -- [ c.0 ]

Основные процессы и аппараты Изд10 (2004) -- [ c.58 ]

Основные процессы и аппараты химической технологии Издание 8 (1971) -- [ c.60 ]




ПОИСК







© 2025 chem21.info Реклама на сайте