Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенос энергии

    Световые лучи имеют длину волны 0,4—0,8 мк тепловые лучи имеют длину волны, равную 0,8—40 мк (1 мк = 10 мм). Таким образом, доля светового лучеиспускания является, например, при 1500° К только небольшой частицей общего лучеиспускания. Поэтому учет энергии видимого. излучения при температурах, которые встречаются в топках промышленных устройств, имеет второстепенное значение. Определяющим в этих случаях является перенос энергии инфракрасными лучами. Это обстоятельство очень важно при определении лучеиспускания несветящегося пламени. [c.130]


    Относительная эффективность переноса энергии. ..... 1 2,2 2,3 3,0 3,2 3.4 4,1 4.7 9,2 [c.167]

    Все три процесса переноса энергии, компонента и количества движения (импульса) протекают во времени, причем каждый имеет собственную кинетику. Независимо от формы кинетических законов в уравнении процесса переноса пе появляется новых переменных, не являющихся функцией основных величин, характеризующих состояние системы и, V, Скорость приращения энтропии, например, согласно уравнению (3-20), при 7 = О и = О выразится следующим образом  [c.31]

    Все рассмотренные выше реакции представляют собой мономолекулярные процессы распада. Генерация ионов в ходе электронной бомбардировки часто приводит к потере наименее прочно удерживаемого электрона, и ионы часто образуются в колебательно возбужденных состояниях с избытком внутренней энергии. В некоторых молекулах образца происходит потеря низкоэнергетического электрона, что приводит к иону в электронно возбужденном состоянии. Ион в возбужденном состоянии может подвергаться внутренней конверсии энергии, в результате чего он переходит в основное электронное состояние с избытком колебательной энергии. Молекула может диссоциировать в любое из возбужденных состояний, участвующих во внутренних конверсиях с безызлучательным переносом энергии. В этом случае ион фрагментирует, как только он начинает колебаться. Таким образом, в данном образце получаются ионы с широким энергетическим распределением, и фрагментация может происходить по различным механизмам. Полезно рассмотреть временные шкалы для некоторых обсужденных процессов. Время одного валентного колебания составляет 10 с, максимальное время жизни возбужденного состояния — около 10 с и время, которое ион проводит в ионизационной камфе масс-спектрометра, равно 10 —10 с. Следовательно, для перехода иона с избыточной электронной энергией в более низкое электронно возбужденное состояние с избытком колебательной энергии времени вполне хватает. Поэтому мы наблюдаем процессы в ионизационной камере через регистрируемые молекулярные ионы в различных энергетических состояниях, которые подвергаются быстрой внутренней конверсии энергии, образуя индивидуальные ионы с различным количеством избыточной энергии. Фрагментация протекает по первому порядку с различными [c.319]


    Найдено, что когда энергия вращения существенна [4], то значение а падает примерно до 1,8 (вследствие того что перенос энергии поступательного и вращательного движения не так эффективен, как перенос одной энергии поступательного движения). [c.164]

    Для химического превращения значительных масс вещества, т. е. множества молекул, являются необходимыми столкновение молекул и обмен энергиями между ними (перенос энергии движения молекул продуктов реакции к молекулам исходных веществ путем столкновений). Таким образом реальный химический процесс тесно связан и со второй физической формой движения — хаотическим движением молекул макроскопических тел, которое часто называют тепловым движением. [c.18]

    Неионизирующие излучения имеют более низкую энергию. Излучение в ультрафиолетовом, видимом и инфракрасном диапазонах спектра — это неионизирующая радиация. Когда эти виды излучений передают свою энергию веществу, происходит возбуждение молекул усиливаются их колебания или электроны переходят на более высокий уровень. В результате такого переноса энергии могут происходить химические реакции, как, например, при приготовлении пищи в микроволновых печах. Длительное неионизирующее облучение также может нанести вред организму. Солнечные ожоги, например, вызываются длительным действием неионизирующего излучения Солнца. Микроволновое и инфракрасное излучения могут оказать пагубное воздействие на организм. [c.304]

    Передачу энергии от сенсибилизаторов с низкой энергией возбуждения в триплетное состояние предложено [36] называть невертикальной. В работе [36] рассмотрена возможность передачи энергии на уже возбужденную молекулу олефина. Триплетная молекула сенсибилизатора при невертикальном переносе имеет значительное время жизни и успевает претерпеть 10 —10 столкновений с молекулами олефина, отобрав при-этом такую молекулу, для которой возможен вертикальный переход. Невертикальный перенос энергии возможен, если олефин образует так называемый фантом-триплет , у которого угол между я- и л -орбиталями составляет я/2 или я. Отмечалось выше (см. также рис. 4,а), что у такого фантом-триплета энергия возбуждения ниже, чем у обычного. [c.70]

    Применение упрощенных схем для кинетического анализа процесса фотохимической изомеризации рассматривалось многими исследователями. Выше такой подход использован для объяснения температурной зависимости квантового выхода при вертикальном переносе энергии. [c.77]

    Если энергия триплета сенсибилизатора переносится на олефин по вертикальному механизму, скорость переноса энергии лимитируется Диффузией и квантовый выход изомеризации Фи не зависит от концентрации олефина Для этого случая, применив принцип стационарности, получим выражение  [c.77]

    Термодинамика необратимых процессов в отличие от классической термодинамики, в которой отсутствует понятие времени и под процессами подразумевается цепочка равновесных состояний, рассматривает именно протекание явлений во времени [8]. Основы учения о переносе энергии были разработаны в магистерской диссертации Н.А.Умова в 1874 г. Уравнение Умова для объемной плотности энергии IV в дифференциальной форме имеет вид  [c.16]

    Для систем произвольной конфигурации от дифференциальных уравнений переноса переходят к интегральным [5]. Вывод интегральных уравнений излучения, описывающих перенос излучения в поглощающих средах, сводится к совместному рассмотрению всех видов излучения и решению уравнения переноса для интенсивности Д. (М, 5) из уравнения (5.10). Объемный характер теплообмена излучением в поглощающих средах зависит от молекулярных свойств среды. Для чистых газов излучение и поглощение носит четко выраженный селективный характер, их спектр является полосатым. Поэтому при выборе необходимого воздействия требуется знание спектральных характеристик оптических констант веществ. Задачи, связанные с переносом энергии в аэродисперсных системах, требуют анализа дисперсного состава твердой или жидкой фазы и учета индикатрис их рассеяния в зависимости от длины волны. [c.95]

    Молекулярная диффузия. Молекулярная диффузия представляет собой область микрокинетики, когда перенос массы вещества осуществляется молекулами. Молекулы газа непрерывно находятся в движении и сталкиваются друг с другом. Число таких столкновений, вследствие больших скоростей и большого числа молекул, очень велико. Молекулы как бы взаимно расталкивают друг друга, в результате чего направление и скорость движения молекул непрерывно меняются. Громадное число столкновений между молекулами приводит к тому, что они в массе не столько движутся в каком-либо направлении, сколько толкутся на месте. Этим и объясняется постоянное, самопроизвольное, медленное перемешивание молекул газа, перенос энергии и массы. [c.192]


    Дифференциальное уравнение переноса энергии при установившемся режиме и осевой симметрии системы имеет вид [c.55]

    Приняв температуру окружающей пузырек жидкости Т = Т , решим дифференциальное уравнение переноса энергии между [c.71]

    При турбулентном потоке критерий Пекле для продольного перемешивания значительно вьппе, чем при ламинарном. Благодаря турбулентности ускоряется обратный перенос энергии и вещества, [c.108]

    Рассмотрим расчет переноса тепла несущей фазой в зернистом слое. Из соотношения (4) несложно получить уравнение переноса энергии, в котором будет фигурировать коэффициент эффективной теплопроводности [c.140]

    Действие добавок, возвращающих реакцию к мопомоле-кулярной, с помощью схемы Линдемана объясняется тем, что молекулы добавленного вещества, сталкиваясь с возбужденными молекулами реагирующего вещества, дезактивируют последние, возвращая их в исходное нереакционноспособное состояние, а сталкиваясь с невозбужденными молекулами, они их, наоборот, активируют. Интересно, что молекулы добавляем мых газов увеличивают скорость мономолекулярной реакции до величины, характерной для высокого давления, но не дают возможности превысить эту величину. Следовательно, роль их неспецифична и заключается лишь в поддержании равновесной, по максвелл-больцмановскому распределению, концентрации активных молекул реагирующего вещества. Доля участия молекулы в переносе энергии при мономолекулярном распаде зависит от ее химической природы и в общем возрастает с ростом молекулярного веса и числа атомов в молекуле. Ниже приведена относительная эффективность (т]эф.) дей  [c.166]

    Пенный режим как режим развитой свободной турбулентности [116] является автомодельным в нем влияние молекулярных характеристик потоков на перенос энергии становится несущественным. [c.33]

    Необходимо сделать ряд предварительных замечаний по поводу физических механизмов переноса энергии, массы и импульса. Эти замечания помогут читателю более отчетливо уяснить концепцию теплопроводности, диффузии, конвекции и излучения. [c.70]

    Перенос субстаищо осуществляется посредством некоторого носителя. Различают три зфовня масштабов при рассмотрении носителя переноса. Нижний уровень — квантовый, на которюм материальным носителем являются элементарные частицы. Например, перенос лучистой энергии осуществляется квантами света (фотонами). В химической технологии этот уровень переноса играет исключительную роль в таких областях, как фотохимия, радиохимия, а также в металлургии, в нефтепереработке и теплотехнике, где используют прямой огневой нагрев. правило, на квантовом уровне осуществляется перенос энергии. И лишь в ядерных реакциях, при которых захват элементарных частиц осколками деления крупных ядер приюдит к образованию стабильных элементов, можно рассматривать перенос вещества. [c.58]

    При фотохимическом возбуждении новые энергетические уро1 ни могут различаться спинами электронов. Состояния с пара лельными спинами (триплеты) имеют более низкую энергию, че состояния с антипараллельными спинами (синглеты). При возбу дении молекулы атомом сенсибилизатора выполняется правил Вигнера, по которому перенос энергии между возбужденной част цей и молекулой в основном состоянии разрешен только при сохр нении полного спина системы. Работы Лейдлера показали, чт правило сохранения спина позволяет объяснить характер ряд фотохимических реакций углеводородов. Основное состояние ол( фина с заполненной я-орбиталью (спины антипараллельны) — си1 глет возбуждение в триплетное состояние представляет собой з прещенный переход. Не следует понимать это как отсутствие во бужденных триплетных состояний, но такие молекулы будут обр зовываться при безизлучательной потере энергии возбужденным синглетными молекулами. [c.66]

    Здесь же отметим, что роль третьей частииы в переносе энергии от вновь образовавшейся молекулы, как правило, возрастает с ростом молекулярного (атомного) веса и увеличением числа степеней свободы справедливость этих критериев нарушается под влиянием химической специфичности третьей частицы. [c.175]

    Этен-номенклатурное название С2Н4 его тривиальное название-этилен.) Соединения с циклическим расположением атомов, имеющие делокализованные, бензолоподобные кратные связи, называют ароматическими. Дакрон, нафталин, ДДТ, аденин и рибофлавин (см. рис. 21-1 и 21-3) содержат ароматические группы. На примере аденина и рибофлавина видно также, что углерод способен образовывать двойные связи с азотом и что азот может принимать участие в образовании ароматических циклов с делокализованными кратными связями. Многие разделы органической химии связаны с особыми свойствами систем, включающих ароматические циклы. Ароматические молекулы и комплексные соединения переходных металлов являются двумя важнейшими классами соединений, в которых энергия, необходимая для возбуждения электрона, приходится на видимую часть спектра. Поэтому практически все красители представляют собой такие соединения и принимают участие в механизмах захвата и переноса энергии фотонов. [c.270]

    В переносе энергии принимают участие еще две другие молекулы, с которыми следует познакомиться, прежде чем перейти к рассмотрению цикла лимонной кислоты. Одной из них является никотинамидадениндину-клеотид (НАД), структура которого показана на рис. 21-22. Эла молекула напоминает АТФ, так как тоже содержит адениновую группу, рибозу и фосфатную группу. Однако важнейшей частью НАД является никотиновое кольцо, которое может попеременно восстанавливаться и окисляться. Эта молекула является окислительно-восстановительным переносчиком энергии. Когда какой-либо метаболит окисляется на одной из стадий цикла лимонной кислоты, окисленная форма никотинамидадениндннуклеоти-да, НАД , может присоединить два атома Н и восстановиться с образованием НАД Н и Н . Другим важным переносчиком энергии является флавинадениндинуклеотид (ФАД). который восстанавливается в ФАД Н2. Оба этих переносчика энергии питают последнюю производственную линию биохимической фабрики запасания энергии, завершающ ю окислительный цикл дыхательной цепи. Она представляет собой четырехстадийный процесс, в котором принимают участие ферменты-цитохромы и происходит повторное окисление восстановленных переносчиков энергии НАД Н и ФАД Н2. В этом процессе кислород восстанавливается до воды, а выделяющаяся энергия запасается в молекулах АТФ. Каждый раз, когда происходит повторное окисление восстановленной молекулы-переносчика энергии, выделяемая при этом окислении энергия запасается путем синтеза нескольких молекул АТФ. [c.328]

    Величины Фи И йтц/(/гтц+ гтт) могут быть измерены по составу продуктов. По результатам измерения Фцкк составляет для нафталина 0,39, для бензола 0,24, для флуорена 0,31. Более высокие значения Фикк наблюдали для хризена (0,67) и метилнафталинов ( 0,5). Для ацетофенона, бензофенона, флуорена и их производных Фикк близок к 1, т. е. эти сенсибилизаторы при вертикальном Переносе энергии наиболее эффективны. [c.77]

    Дальнейшим развитием схемы Шенка для невертикального переноса энергии является радикальный механизм [39], по которому предполагается возможность изомеризации в цепном процессе, инициируемом радикалами. Последние могут образов ься при возбуждении сенсибилизатора УФ-квантами высоких энергий (выше 5 эВ). Олефины способны акцептировать только легкие радикалы или атомы, поэтому сенсибилизатор, осуществляющий цис-транс-тоиертацию по радикальному механизму, должен быть донором таких частиц. Схему фотохимической изомеризации по радикальному механизму можно представить в таком виде [c.71]

    Путем дегидратации н-геш тиловых спиртов в присутствии неизомеризующего или слабоизомеризующего катализатора были приготовлены смеси, содержавшие геп-ген-2 и гептен-3 [45]. В качестве сенсибилизаторов был использован бензол (его триплетный уровень возбуждения на л 20 кДж/моль выше, чем у н-гептенов, Ь связи с чем возможен вертикальный перенос энергии), а также ацетон (являющийся акцептором заряженных частиц). Приготовленные растворы олефинов и сенсибилизатора содержали следы цислорода для ингибирования структурной изомеризации. Растворы помещали в ампулы и облучали при 20 °С и мощности дозы М-10 эВ/(смЗ-с) до поглощения от 1,5-10 до 18-10 э эВ м  [c.73]

    Сообщается [46] об оригинальном методе использования активированной светом цис-транс-изомеризации для определения квантового выхода интеркомбинацио нной конверсии Фикк- Метод основан на анализе упрощенной схемы вертикального переноса энергии  [c.77]

    В тепло-массообменных процессах воздействия должны быть связаны с ускорением переноса энергии и массы. Из физической сущности тепло-массопереноса следует, что интенсификация может идти по пути создания больших градиентов, влияния на конвективный перенос, непосредственно на коэффициентны переноса, а также по пути управления распределением источников. Когда создание больших градиентов лимитировано свойствами перерабатываемых веществ или технологическими условиями, перспективно физическое воздействие через конвективный тепло-массоперенос. Существенный вклад может дать управляемое пространственно-временное распределение внутрен-. них источников тепла, генерируемых различными полями или частицами. Наконец, возможно влияние непосредственно на коэффициенты переноса, например утоньчение пограничных слоев под воздействием колебаний и т. п. [c.18]

    Задача нагрева решается в рамках задач теплообмена излучением, т.е. определяют плотность излучения, на поверхностях теплообмени-вающихся тел по заданным температурным распределениям (прямая задача), либо отыскивают температуры по значениям радиационных потоков (обратная задача). В более общей постановке эти задачи относятся к процессам переноса энергии излучения [5]. Дифференциальное уравнение переноса, определяющее изменение интенсивности излучения в поглощающей и излучающей среде, в стационарном случае имеет вид  [c.95]

    Энергетические процессы представляют собой передачу в гространстве различных форм энергии. 1-1аибольшее распростра-тение в химической технологии, в том числе в процессах тонкой >нмии, получили тепловые процессы, т. е. перенос энергии в форме теплоты (теплопроводностью, конвекцией или излучением). Движущей силой процесса является разность температур Е разных точках пространства. [c.16]

    Из других видов энергии в процессах тонкого химического-синтеза представляют интерес перенос оптического излучения,, энергии акустических колебаний, ионизирующего излучения. Процесс переноса оптического излучения происходит в фото-физических и фотохимических процессах, перенос энергии акустических волн — в звукохимических процессах и при перемешивании при помощи ультразвуковых колебаний, ионизирующего излучения — радиационно-химпческих процессах. [c.17]

    У <р . Аи/ДиЛ> 0 — пренебрежение энергией частиц, пересекаемых границей выделяемого микрообъема йУ, по сравнению с теми же величинами для частиц, целиком находяшихся в этом же микрообъеме йУ, пренебрежение флюктуационным переносом энергии пульсационного движения в фазах <рГ Ас1(гАи/ >, 0 — пренебрежение флюктуационным переносом компонента (гА [(г)- Д г1(/ )>г — пренебрежение флюктуациями скорости роста кристалла. [c.127]

    Левая часть матричного уравнения (2.113) соответствует линейному трехсвязному 1-полю. Конвективный перенос энергии и импульса, которому соответствуют члены с в правых частях уравнений (2.106), (2.111) и (2.112), отражается на связной диаграмме трехсвязным Н-полем с жесткой причинной обусловленностью, указываемой на диаграмме связи положением штрихов причинности (см. рис. 2.25). Роль остальных элементов связной диаграммы, изображенной на рис. 2.25, ясна из сопоставления диаграммы и системы уравнений (2.106), (2.1Н) и (2.112). [c.175]

    В ч. 2 Справочника изложены основные законы, определяющие интенсивность переноса энергии, массы и импульса. Эти аконы Затем можно использовать вместе с законами термодинамики в процессе проектирования теплообменников. В испол1,зуемой в даиноп книге терминологии под теплообменниками понимаются все тины оборудования, в котором перенос теплоты является фактором, существенным для процесса или даже контролирующим его скорость. Поэтому такие устройства, как сушилки, трубчатые реакторы и т.д., также обсуждаются детально. [c.70]


Библиография для Перенос энергии: [c.293]   
Смотреть страницы где упоминается термин Перенос энергии: [c.75]    [c.162]    [c.278]    [c.329]    [c.165]    [c.69]    [c.75]    [c.109]    [c.390]    [c.390]    [c.42]    [c.69]    [c.70]    [c.110]   
Смотреть главы в:

Катализ Новые физические методы исследования -> Перенос энергии

Физика и химия твердого состояния органических соединений -> Перенос энергии

Структурная теория органической химии -> Перенос энергии

Введение в фотохимию органических соединений -> Перенос энергии

Радиационные эффекты в физике, химии и биологии -> Перенос энергии

Флеш-фотолиз и импульсный радиолиз Применение в биохимии и медицинской химии -> Перенос энергии


Основы теории горения и газификации твёрдого топлива (1958) -- [ c.144 , c.514 ]

Современная общая химия Том 3 (1975) -- [ c.0 ]

Органические люминофоры (1976) -- [ c.12 ]

Введение в радиационную химию (1967) -- [ c.121 , c.122 , c.134 , c.331 , c.332 , c.333 , c.361 ]

Молекулярная фотохимия (1967) -- [ c.0 ]

Современная общая химия (1975) -- [ c.0 ]

Теория абсолютных скоростей реакций (1948) -- [ c.282 , c.287 ]

Фотохимия (1968) -- [ c.0 ]

Проблемы физики и химии твердого состояния органических соединений (1968) -- [ c.64 , c.75 ]

Биология Том3 Изд3 (2004) -- [ c.186 , c.388 , c.390 , c.395 , c.398 ]

Термодинамика необратимых процессов (1956) -- [ c.73 , c.113 ]

Радиационная химия (1974) -- [ c.137 ]

Физическая Биохимия (1980) -- [ c.432 , c.436 ]

Фотосинтез (1983) -- [ c.56 ]




ПОИСК







© 2025 chem21.info Реклама на сайте