Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Течение растворов

    Измерение вязкости осложнено тем, что растворы некото-рых полимеров не являются ньютоновскими жидкостями, т. е. для них величина т] не является постоянной, а уменьшается с ростом градиента скорости течения раствора в капилляре. При значительных концентрациях это изменение обусловлено наличием структуры, образованной взаимодействием макромолекул между собой (см. работу 44). [c.292]


    Реологическое поведение полимеров определяется не только-температурой, но и природой полимера, его молекулярной массой и молекулярно массовым распределением, а также напряжением и скоростью сдвига, при которых осуществляется течение раствора или расплава. Поэтому нельзя характеризовать реологические свойства полимера по одной величине, скажем, по вязкости. Охарактеризовать реологическое поведение полимера можно, лишь установив зависимость вязкости от напряжения или от скорости сдвига либо зависимость напряжения сдвига от скорости сдвига и получив при этом кривые течения. [c.157]

    Течение растворов через поры ультрафильтрационных мембран подчиняется закону Пуазейля, поэтому проницаемость обратно пропорциональна динамической вязкости. [c.202]

    Эффективная энергия активации при концентрационной поляризации, т. е. при диффузионном контроле процесса, представляет собой энергию активации вязкого течения раствора, которая для разбавленных водных растворов близка к энергии активации вязкости воды (табл. 50). [c.353]

    Зависимость вязкости от градиента скорости для растворов полимеров средней концентрации обусловлена двумя причинами. Во-первых, при течении раствора длинноцепные молекулы, находящиеся в растворе в виде клубков, распрямляются и ориентируются по направлению течения, что, конечно, уменьшает гидродинамическое сопротивление потоку. Это объяснение аналогично объяснению зависимости коэффициента вязкости от градиента скорости для коллоидных систем, содержащих жесткие удлиненные частицы. Понятно, что ориентация макромолекул происходит и при течении разбавленных растворов полимеров. Однако в этом слу- [c.462]

    На течение растворов полимеров и их вязкость большое влияние мол<сет оказывать также изменение формы макромолекул. При наложении внешнего давления возможно распрямление полимерных клубков и ориентация их по направлению течения. В результате ориентации макромолекул гидродинамическое сопротивление потоку и вязкость раствора уменьшаются. При относительно больших концентрациях растворов распрямление и ориентация полимерных молекул затруднены. Поэтому при повышении концентрации растворов гибкоцепных макромолекул вязкость увеличивается более резко, чем предсказывает уравнение Эйнштейна. [c.195]


    Чем обусловлены и как оцениваются входовые эффекты в процессе течения растворов и расплавов полимеров  [c.205]

    Рис. 1.9 демонстрирует влияние капиллярного осмоса на течение растворов через обратноосмотические мембраны под действием перепада гидростатического давления АР. В этих опытах совместно проявляются оба эффекта обратный осмос и капиллярный осмос. Вследствие пониженной (из-за отрицательной адсорбции) концентрации раствора в порах при фильтрации возникает градиент концентрации раствора (обратный осмос) концентрация вытекающего раствора С/ ниже концентрации раствора Со, подаваемого на вход тонкопористой мембраны. Возникающая при этом разность концентраций АС вызывает капиллярно-осмотическое течение раствора, наклады- [c.25]

    Конструкция аппарата обеспечивает необходимый гидродинамический режим течения раствора, допускает многократный демонтаж и монтаж, при массовом производстве разделительных элементов позволяет обойтись несложным технологическим оборудованием и легко механизировать производственный процесс. Аппарат отличается небольшой металлоемкостью ввиду отсутствия прочного корпуса. [c.121]

    Рассмотрим конструкции аппаратов, разбив их на группы по указанным выше признакам. Течение растворов в аппаратах первых трех групп идентично и не отличается от движения потоков в рассмотрен- [c.143]

    Сечение на входе в первую секцию. Определим режим течения раствора. Скорость течения равна  [c.198]

    Применение полимерных добавок в системах пожаротушения связано с проблемой хранения, приготовления и введения концентрированных растворов в поток воды. Исследования показывают, что полимеры с длинными цепями должны быть хорошо смешаны с водой перед введением в установку. В то же время готовые растворы полимеров в воде в результате хранения быстро теряют способность снижать гидравлическое сопротивление трубопроводов. Эффект увеличения пропускной способности трубопровода при течении раствора высокомолекулярных добавок полностью пропадает по истечении трех суток с момента приготовления раствора [27]. [c.65]

    Измерение вязкости проводилось при чрезвычайно малой скорости деформации, так как согласно работам [58, 64] при атом достигается наибольшая вязкость, сохраняющая постоянное значение в областях с достаточно малой скоростью сдвига. В таких условиях ньютоновская вязкость характеризует течение раствора в неразрушенной структуре, что особенно важно для ограниченно набухающих полимеров. [c.320]

    Величину высокоэластической деформации евэ (см. рис. 3.7) необходимо учитывать при анализе течения растворов и расплавов. С увеличением молекулярной массы полимера возрастает Яу/  [c.183]

    Одним из важнейших направлений развития физико-химической механики нефтяных дисперсных систем является изучение течения наполненных нефтяных систем, концентрированных растворов высокомолекулярных соединений нефти. Задача подобных исследований состоит в описании режимов течения нефтяных систем — растворов нефтяных фракций в широком интервале изменения физико-химических характеристик и концентраций их составляющих, типов растворителей и других факторов. Таким образом, на основании выявленных феноменологических закономерностей возможно будет выяснить качественные модели режима течения растворов нефтяных фракций. Прикладным значением таких моделей явится прогнозирование поведения нефтяных систем в процессах их добычи, транспорта и переработки, выявление новых направлений использования нефтяного сырья и создание на этой базе новых видов композиционных материалов. [c.86]

    Результаты экспериментов и расчетные данные при изучении характера течения растворов ВМС нефти в масле МП-1 показали, что растворы асфальтита в масле МП-1 обладают аномалией вязкости, которая особенно проявляется при концентрациях асфальтита выше 5% мае. При повышении температуры с 20 до 40°С аномалия практически исчезает. Растворы асфальтита I характеризуются большими вязкостью и аномалией вязкости, по сравнению с растворами асфальтита II. Это объясняется более высокой молекулярной массой асфальтита II, а также повышенным содержанием в нем карбеновых структур. Асфальтиты в минеральном масле образуют структуры с очень низкой прочностью. Несмотря на это они способны удерживать в иммобилизованном виде значительное количество дисперсионной среды. Коэффициент удерживания для 18%-ного раствора составляет, например, 3,94 и 3,61 для асфальтита I соответственно при температурах 20 и 40 С. [c.256]

    Энергия активации вязкого течения растворов асфальтенов растет с увеличением концентрации ВМС в растворах. Это может быть объяснено увеличением числа контактов между структурными образованиями. Подобное объяснение находится в [c.256]


    Анализ кривых течения растворов асфальтенов и лакового битума в минеральном масле показывает, что эти два вида ВМС нефти формируют в минеральном масле струк-т фные образования различной прочности. В растворах битума характерно образование большого количества пространственных структур с низкой прочностью. В растворах асфальтенов, по-видимому, образуются более компактные и прочные структуры. Можно предположить, что при этом сольватный слой структурных образований в растворах лакового битума имеет большую толщину, чем в растворах асфальтенов пиролизной смолы. Следует отметить, что наиболее прочную структуру в минеральном масле образует лаковый битум, а наименее прочную — асфальтены. Асфальтит занимает среднее положение между битумом и чистыми асфальтенами. Такое же положение он занимает и по реологическому поведению. С увеличением температуры относительная прочность структур из лакового битума уменьшается. Можно предположить, что при более высоких температурах (около 60°С) уменьшается относительная прочность структур и в растворах асфальтита, что обусловлено образованием за счет содержащихся в лаковом битуме и асфальтите парафино-нафтеновых, легких и средних ароматических углеводородов сольватных слоев значительной толщины вокруг ядер структурных образований. Естественно, это способствует образованию термически и механически непрочной структуры. Асфальтены из пиролизной смолы формируют плотные структурные образования, занимающие относительно небольшой объем в дисперсной системе. Поэтому при низких температурах в этих растворах образуется недостаточно развитая пространственная сетка, но термически более прочная, чем в растворах ВМС, содержащих парафино-нафтеновые и ароматические углеводороды. [c.257]

    Нефтяной пек, в отличие от асфальтитов, асфальтенов и лакового битума, содержит карбены, которые не растворяются в толуоле и подобных растворителях. Очевидно, они нерастворимы и масле МП-1, что приводит к образованию в растворе нефтяного пека в масле МП-1 нерастворимой дисперсной фазы, которая может служить центром формирования структурных образований. Кроме того, они могут образовывать самостоятельную фазу с развитой цепочечной структурой, например, при температуре около 180°С в условиях приготовления раствора. Внутри этих структур может произойти объемная сорбция асфальтенов с образованием сольватного слоя сложной конфигурации. В зависимости от соотношения карбены асфальтены в нефтяном пеке может образоваться пространственная сетка из компонентов различной природы. На кривых течения раствора нефтяного пека в масле МП-1 действительно [c.257]

    Скорость течения раствора на некотором уровне хсг равна [c.159]

    Допустим, что ионообменное равновесие устанавливается мгновенно, т. е. при прохождении раствора через слой ионита время установления ионообменного равновесия меньше, чем время нахождения раствора в данном объеме ионита. Следствием этого допущения является независимость распределения обменивающихся ионов по длине слоя ионита от скорости течения раствора вдоль слоя. [c.107]

Рис. 23.1. Схема течения раствора ВМВ через капилляр Рис. 23.1. <a href="/info/1322364">Схема течения</a> раствора ВМВ через капилляр
    У систем с деформирующимися частицами, например у эмульсий, наблюдается аналогичная зависимость. Капельки дисперсной фазы с возрастанием приложенного напряжения сдвига и увеличением скорости течения удлиняются, превращаясь из шариков в эллипсоиды, что, конечно, облегчает течение и понижает вязкость. То же самое наблюдается и при течении растворов высокомолекулярных соединений с гибкими, свернутыми в клубок макромолекулами. Здесь падение вязкости обусловлено распрямлением [c.327]

    Диафрагма формировалась в трубке 2), имеющей два отвода с платиновыми электродами для измерения электросопротивления диафрагмы (5). Скорость течения раствора учитывалась по микробюретке. Потенциал течения измерялся с помощью [c.101]

    Цель работы. 1. Построение кривой течения раствора полимера. [c.158]

    Строят кривую течения раствора КМЦ в координатах N, д и, экстраполируя прямолинейный участок кривой до пересечения с осью абсцисс, получают значение (в г), отвечающее величине О (см. рнс. V.7). [c.135]

    Многим исследователям удалось также наблюдать явление двупреломления при течении растворов высокомолекулярных соединений и коллоидов с анизодиаметричными частицами (золей гидроокиси железа, пятиокиси ванадия и др.). При этом эффект двупреломления был особенно ярко выражен в коллоидных системах. Это так называемое собственное двупреломление. Количественное изучение собственного двупреломления позволяет судить о форме и размерах коллоидных частиц. [c.43]

    Многократное повторение актов адсорбции и десорбции при течении раствора через слой адсорбента приводит к отставанию наиболее поверхностно-активных компонентов, что позволяет определить их содержание в исходном растворе или отделить их от других, менее адсорбционно-активных веществ. Методы адсорбционной хроматографии широко применяются для фракционирования аминокислот, нуклеиновых кислот, белков и других биополимеров, для выделения различных ферментов и лекарственных препаратов (пенициллина, тетрациклина, алкалоидов и др.). [c.93]

    Появление в растворе анизометричных коллоидных частиц, существование которых впервые предположил Мак-Бен, экспериментально фиксируется рядом методов оптическими, рентгенографическими, реологическими. Так, например, при течении растворов ПАВ, содержащих мицеллы Мак-Бена, наблюдаются отклонения от уравнения Ньютона (см. гл. XI). Структура ленточных и пластинчатых мицелл, образованных параллельно упакованными молекулами ПАВ, идентична бимолекулярному слою. Поверхностные свойства анизометричных (и особенно ленточных) мицелл оказываются неодинаковыми на различных участках на плоских участках, где плотность полярных групп выше, чем на концевых, углеводородное ядро в большей степени экранировано от контакта с водной фазой, тогда как концевые участки проявляют меньшую гидрофильность, чем плоские. При дальнейшем увеличении общего содержания ПАВ в системе (или, что то же, уменьшении содержания воды) уменьшается подвижность мицелл и происходит их сцепление, в первую очередь, концевыми участками 3. Н. Маркиной и сотр. показано, что при этом образуется объемная сетка — коагуляционная структура (гель), с характерными для таких структур механическими свойствами пластичностью, прочностью, тиксотропией (см. гл. XI). [c.230]

    Многократное повторение актов адсорбции и десорбции при течении раствора через слой адсорбента приводит [c.113]

    И. В чем заключаются особенности вязкого течения растворов ВМС  [c.397]

    С увеличением концентрации вязкость растворов полимеров возрастает непропорционально, и течение концентрированных растворов уже не подчиняется законам Ньютона и Пуазейля. Это проявляется в том, что вязкость этих растворов не является постоянной, а уменьшается с увеличением скорости течения растворов. [c.257]

    Как видно из рис. 1.9, капиллярно-осмотическое торможение приводит к тому, что продолжение линейных участков зависимостей v AP) не проходит через нача.по координат и отсекает на оси давления отрезок, численно равный так. называемому динамическому осмотическому давлению Ал. Для полупроницаемых мембран, когда в порах находится только растворитель (С = 0), Ап = Апо = ЯТАС. В случае обратноосмотических мембран, в поры которых растворенное вещество проникает (СфО), Ал = аАпо. В первом приближении а=ф <1, где ф=1— — (С//Со) — коэффициент селективности мембраны. Давление Ап является динамическим в том смысле, что оно возникает только при течении раствора. В отсутствие течения, разность концентраций снимается диффузией растворенного вещества через поры мембраны. [c.26]

    Мембранный элемент (рис. 111-11,6) диаметром 450 мм и площадью фильтрации 0,21 м состоит из двух мембран 4, уложенных по обе стороны дренажного слоя 1, образованного между двумя латунными сетками с ячейками размером 71 мкм. Под мембрану уложен лист ватмана 3 для улучшения условий ее прилегания к дренажному слою. Между ватманом и латунной сеткой располагаются кольца 2 из тонкого жесткого материала, предохраняющие мембраны и ватман от продавливания в ячейки сетки в зоне обжатия. Этим обеспечивается надежный отвод фильтрата из дренажного слоя мембранного элемента наружу. В районе переточных отверстий мембраны и латунные сетки приклеены клеевой композицией на основе клея Циакрин . Конструкция аппарата позволяет подбирать необходимый гидродинамический режим течения раствора, изменяя толщину уплотнительных прокладок и число мембранных элементов в каждой секции. [c.119]

    Наблюдаемую селективность рассчитаем по формуле (XII.17). Расчеты проведем для крайних секций — первой и седьмой. При течении раствора между круговыми элементами скорость меняется от максимальной (в областях входа и выхода) до минимальной (в средней части элемента). Среднюю ширину кругового сечения найдем, разделив площадь элемента на длпну пути раствора, которую примем равной диаметру элемента  [c.205]

    Прижр 2. Течение раствора карбоксим.етилцеллюлозы в кольцевом канале. Пусть требуется создать объемный расход 50 см- /с при течении в кольцевом канале между трубами с радиусами 6, 8 и 7 см 3,5%-ного водного раствора карбоксиметилцеллюлозы. Такой раствор описывается моделью Эллиса со следующими значениями констант  [c.174]

    В области малых значений Р и dujdx кривая имеет прямолинейный участок. Непьютоновская лшдкость в этих условиях течет как ньютоновская лшдкость, обладающая большой вязкостью = tg Ol- Постоянство вязкости на атом участке объясняется тем, что при малых значениях Р процессы ориентации и деформации макромолекул или разрушение структуры заметно не влияют па вязкость лшдкости. Медленное течение растворов полимеров или коллоидных систем с неизменяющейся вязкостью называется ползучестью. [c.128]

    При течении раствора электролита через капилляр или поры капиллярной системы под действием внешнего давления Р возникают потоки ионов обоих знаков в направлении вектора дгас1 Р. Существование диффузной части ДЭС приводит к тому, что общий поток противоионов оказывается большим, чем поток коионов. Разность потоков представляет собой поток свободных зарядов — электрический ток. Этот конвективный поверхностный ток /а называют током течения (рис. 85). [c.216]


Смотреть страницы где упоминается термин Течение растворов: [c.42]    [c.216]    [c.277]    [c.552]    [c.53]    [c.350]    [c.552]    [c.74]    [c.220]    [c.179]   
Механохимия высокомолекулярных соединений (1971) -- [ c.259 ]




ПОИСК







© 2025 chem21.info Реклама на сайте