Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные мембраны

    На рис. 4 приведена схема электродиализатора. При электродиализе мембраны несут электрический заряд, и может произойти смена ионного состава коллоидной дисперсии, соответственно изменяется и ее pH. Эти изменения обусловлены тем, что электрически заряженные мембраны неодинаково проницаемы для катионов и анионов. Для устранения этого эффекта мембраны, применяемые в электродиализе, могут обрабатываться различными веществами, уменьшающими их собственный заряд. Избирательные свой-сва мембран в некоторых случаях используют и для селективной очистки или для еще большего ускорения электродиализа, когда применяют две мембраны — анодную и катодную, изготовленные из материалов с различными зарядами. [c.16]


    Большой интерес для очистки сточных вод, растворенные вещества которых могут легко переходить в коллоидную форму, представляют динамические мембраны. К этому типу сточных вод относятся, в частности, промывные воды гальванических производств. Эти воды отличаются высокой токсичностью и перед сбрасыванием в водоемы подвергаются глубокой очистке. В настоящее время наиболее распространены химические методы очистки, характеризующиеся высокой стоимостью и большим расходом химических реагентов. Так, очистка хромсодержащих сточных вод включает стадии восстановления шестивалентного хро ма до трехвалентного сульфатом натрия или серной кислотой, нейтрализации полученного раствора едким натром илп гидратом окиси кальция, отделения полученного осадка Сг(ОН)з в отстойниках. Причем на 1 кг СгОз расходуется около 5 кг кислот и щелочей. Указанные методы имеют и ряд других недостатков. Так, осадок, полученный в отстойниках, содержит много влаги и подвергается обезвоживанию на вакуум-фильтрах. Высушенный осадок, как правило, не перерабатывается и вывозится на захоронение. [c.317]

    Как оказалось, ферменты действительно неспособны или почти неспособны к диализу. С помощью диализа растворы ферментов можно, например, освобождать от примесей различных электролитов и органических соединений, молекулы которых легко проходят через коллоидные мембраны. [c.121]

    Шмид и Шварц [S 24, 28] достигли значительного успеха в исследованиях электрокинетического явления, применяя окисленные коллоидные мембраны с концентрацией фиксированного иона порядка 10 —10" N и раствор хлористого калия с концентрацией около 10 N. [c.57]

    В отличие от суспензий, отделить фильтрованием через бумажные или глиняные фильтры дисперсную фазу от дисперсионной среды в коллоидных растворах нельзя, так как частицы их значительно меньше, чем поры фильтров. Существуют, однако, так называемые к.коллоидные мембраны- , через которые не проходят и коллоидные частицы, в то время как еще более мелкие дисперсные частицы истинных растворов свободно проходят н через эти мембраны. В качестве коллоидных ме.мбран применяют, например, перепонки из коллодия, пергамента, целлулоида и т. п. [c.120]

    Диализ. Диализ — это процесс освобождения коллоидных растворов от примесей, способных проникать через полупроницаемые мембраны. Этот метод очистки, предложенный еще Грэмом, наиболее прост и доступен. Процесс очистки основан на способности примесных ионов и молекул малых размеров свободно проникать через полупроницаемые мембраны, тогда как крупные коллоидные частицы и молекулы высокомолекулярных соединений такой способностью не обладают. [c.291]


    Согласно этой теории, ионный обмен рассматривается как особый случай мембранного равновесия, т. е. неоднородного распределения ионов по обе стороны мембраны. С одной стороны мембраны имеется электролит, один из ионов которого не способен диффундировать через мембрану. Такую систему можно получить, помещая натриевую соль конго красного с одной стороны коллоидной мембраны и раствор хлорида натрия—с другой. Так как коллоидные анионы красителя (конго красного) не могут диффундировать через мембрану, в такой системе происходит только перераспределение ионов натрия и хлора. Однако распределение будет неоднородным из-за неспособности аниона красителя диффундировать через мембрану. - [c.16]

    Весьма интересной является зависимость характеристик разделения от концентрации поверхностно-активных веществ (рис. У1-22, в). Здесь наиболее ярко можно проследить взаимосвязь между структурой раствора и характеристиками разделения. На кривых селективность — концентрация ПАВ имеется ярко выраженный минимум. Причем такие минимумы характерны только для крупнопористых мембран — ультрафильтров. Более плотные обратноосмотические мембраны обладают высокой селективностью даже по отношению к мономеру. На крупнопористых мембранах увеличение концентрации ПАВ от О до ККМ приводит к снижению селективности, так как структурирования раствора в этой области не наблюдается. Минимум на кривой селективности соответствует ККМ данного ПАВ. Выше ККМ раствор начинает переходить в мицеллярное состояние и селективность задержания ПАВ резко возрастает. Выход кривых селективности и проницаемости на максимальные постоянные значения свидетельствует о том, что структура раствора стабилизировалась. Таким образом, ход этих кривых связан с изменением в структуре самих коллоидных растворов. [c.322]

    Ферменты по своему химическому строению являются белками. Они принадлежат к высокомолекулярным соединениям и обладают рядом особых свойств, присущих этим соединениям. Ферменты образуют коллоидные растворы. Это свойство используется при диализе в лабораторных условиях для очистки ферментов от примесей электролитов и органических соединений, молекулы которых проходят через коллоидные мембраны. [c.129]

    Из табл. 40 видно, что при 2/ i==100 хлорид натрия практически поровну распределяется по обе стороны полупроницаемой мембраны. Если соотношение 2/ i = 0,01, то 99% хлорида натрия остается в правом отделении и только 1% его переходит к коллоидному раствору. [c.306]

    Процесс образования динамических мембран. Полупроницаемый слой, формирующийся на поверхности пористой подложки в результате сорбции диспергированных частиц, в большинстве случаев находится в динамическом равновесии с раствором. Время достижения равновесия зависит от условий эксперимента и обычно составляет несколько часов. Рис. П-18, а иллюстрирует процесс образования динамических мембран и их разрушение после удаления из раствора коллоидных частиц. Как видно из рисунка, образование мембраны выражается в повышении селективности и снижении проницаемости. Затем наступает равновесие селективность и проницаемость не изменяются. Если прекратить добавление в раствор дисперсных частиц, селективность в течение нескольких часов падает до нуля, а проницаемость возрастает. [c.86]

    Коллоидные системы занимают промежуточное положение между взвесями и истинными растворами. От взвесей они отличаются тем, что содержащиеся в них частицы со временем не осаждаются на дно сосуда, а от истинных растворов тем, что хотя и проходят сквозь поры фильтровальной бумаги, но задерживаются специальными мембранами из коллодия или бычьего пузыря. Растворенные вещества проходят через подобные мембраны — на этом основано разделение коллоидов и кристаллоидов. [c.75]

    Влияние pH на проницаемость и селективность гидроокисных мембран иллюстрируется на рис. 11-18, г. Экстремальный характер зависимостей может быть объяснен совместным влиянием изменения размера коллоидных частиц (что отражается на размере пор полупроницаемого слоя) и ионообменной способности мембраны и растворения коллоидных частиц в сильно кислых и щелочных средах. [c.89]

    Метод диализа основан на неодинаковой способности компонентов растворов к диффузии через тонкие пленки — мембраны (из целлофана, пергамента, нитроцеллюлозы, ацетилцеллюлозы). Этот метод широко применяют для очистки коллоидных растворов и растворов высокомолекулярных соединений. Вещества, не проникающие через мембраны при диализе, были названы коллоидами. Любое вещество при подходящих условиях может быть получено в коллоидном состоянии (П. П. Веймарн, 1906 г.). [c.296]


    Применяя для ультрафильтров мембраны с определенной степенью пористости, можно в известной мере произвести разделение коллоидных частиц и одновременно приближенно определить их размеры. Этим методом впервые были определены размеры целого ряда вирусов и бактериофагов. [c.293]

    ДИАЛИЗ — освобождение (очистка) коллоидных растворов и растворов высокомолекулярных соединений от растворенных в них низкомолекулярных соединений при помощи полупроницаемой перегородки — мембраны. Д. применяется, в основном, для очистки коллоидных растворов от примесей электролитов. Д. основан на законах диффузии. Приборы, в которых проводится Д., называются диализаторами. Процесс диффузии ионов при Д. можно ускорить [c.87]

    Объяснение. Сущность процесса диализа заключается й том, что молекулы и ионы способны проникать через полупроницаемую мембрану и переходят в растворитель. Процесс этот длится до тех пор, пока не установится равновесие между концентрацией молекул и ионов по обе стороны мембраны. Однако коллоидные частицы в силу своего большого размера не проходят через мембрану. Обновляя все время растворитель, добиваются очистки золя от посторонних примесей. [c.160]

    Влияние pH. Характеристики динамических мембран в значительной степени зависят от pH обрабатываемых растворов. При изменении pH меняется ионообменная способность заряженных мембран, что отражается на степени задержания различных ионов. Например, мембраны, образованные полиакриловой кислотой, в щелочной среде обладают значительно большей селективностью по Na l и Na2S04, чем по Mg b, поскольку Mg2+ является многовалентным противоионом [98]. В кислой среде мембрана переходит в нейтральную форму и наблюдается противоположная картина. Влияние pH является существенным и по той причине, что большинство мембранообразующих добавок представляет собой коллоидные системы, а в зависимости от pH может наблюдаться изменение размера коллоидных частиц, их растворение или коагуляция. [c.89]

    Однако началом классического периода в развитии коллоидной химии следует считать работы английского химика Грэма (1861), которого по праву считают отцом коллоидной химии. Он ввел термин и определил понятие коллоиды . Изучая различные растворы, Грэм обнаружил, что одни вещества быстро диффундируют и проходят через растительные и животные мембраны, легко кристаллизуются. Другие обладают очень малой диффузней, не проходят через мембраны и не кристаллизуются, а образуют аморфные осадки. Так, например, сравнивая время диффузии различных растворенных веществ и принимая время диффузии НС1 за единицу. Грэм получил сильно различающиеся значения  [c.280]

    Эффект Доннана обусловливает распределение электролитов в тканях орга--низма и является причиной возникновения биопотенциалов. Для лиофобных систем, как мы указывали в гл. Ill, эффект Доннана также имеет большое значение. Здесь роль мембраны или геля играют сами коллоидные частицы, на которых адсорбированы недиффундирующие ионы, что приводит к неравномерному распределению электролита в растворе. Особенно такое неравномерное распределение сказывается при центрифугировании золей (аоль-концентрационный эффект) или при оседании суспензии (суспензионный эффект Пальмана — Вигнера). При ультрафильтраций доннановский эффект может приводить к неравномерному распределению электролитов в ультрафильтрате и в межмицеллярной жидкости. [c.477]

    Если два раствора электролита разделены мембраной, непроницаемой хотя бы для одного из ионов (обычно это ион коллоида), то все остальные ионы распределяются по обе стороны мембраны неравномерно. Это сказывается на величине измеряемого осмотического давления коллоидного раствора, а также проявляется в обнаружении разности потенциалов между коллоидным раствором и равновесной с ней жидкостью. Данное явление было открыто в 1911 г. Доннаном и получило название мембранного равновесия или равновесия Доннана. Очень близко связаны с этим явлением так называемые суспензионный и золь-концентрационный эффекты. [c.305]

    Коллоидные растворы способны к диализу, т. е. с помощью полупроницаемой перегородки (мембраны) могут быть отделены от растворенных в них примесей низкомолекулярных веществ, При диализе молекулы растворенного низкомолекулярного вещества проходят через мембрану, а коллоидные частицы, неспособные проникать через полупроницаемую перегородку (диа-лизировать —по терминологии Грэма), остаются за ней в виде очищенного коллоидного раствора. Способность к диализу также указывает на то, что размер содержащихся в коллоидных растворах частиц значительно больше размера молекул, до которых раздроблено вещество в истинных растворах. [c.10]

    Для проведения электродиализа применяют различной конструкции аппараты, называемые электродиализаторами. Основой таких аппаратов является трехкамерная ячейка, среднее пространство которой отделено от крайних электродных камер мембранами. Подлежащий очистке коллоидный раствор помещают в среднюю камеру, в то время как крайние камеры наполняют водой. Мембрана, расположенная у отрицательного электрода называется — катодной, а у положительного — анодной. Следует обращать большое внимание на выбор материала для анода, чтобы избежать анодного растворения и переноса ионов металла через анодную мембрану в среднюю камеру. В связи с этим в качестве анода обычно употребляют платину или графит. В качестве катода могут служить различные металлы — железо, никель, медь. [c.223]

    Для катионов щелочноземельных металлов данные по числам переноса через коллодиевые мембраны различной пористости были получены Ю. С. Большаковой на кафедре коллоидной химии. Ряд цифр из ее работы приведен в табл. 24. [c.158]

    Благодаря малым размерам коллоидные частицы легко проходят через бумажные фильтры. Они фильтруются так же, как и истинные растворы. Фильтруются через бумажные фильтры и вирусы, которые имеют размеры, соответствующие коллоидной степени дисперсности (до 100 нм). Однако перегородки животного происхождения — мембраны — задерживают коллоидные частички. [c.384]

    Коллоидные растворы отличаются от истинных растворов специфическими свойствами 1) рассеивают свет, т. е. дают опалесценцию 2) обнаруживают явление электрофореза, заключающееся в переносе коллоидных частиц в электрическом поле к тому или другому электроду 3) проявляют способность к диализу, т. е. с помощью мембраны коллоидные частицы могут быть отделены от растворенных в них примесей низкомолекулярных веществ  [c.5]

    В заключение следует отметить, что осмотические явления обнаруживаются не только при наличии мембраны, препятствующей диффузии растворенных и диспергированных веществ. Подобные явления отмечают и в других системах, имеющих ограничения для свободного перемещения коллоидных частиц или макромолекул полимеров, например в гелях, студнях, ионообменных адсорбентах, где частицы взаимно фиксированы в виде ажурной пространственной сетки. [c.374]

    Диализ заключается в извлечении из золей низкомолекулярных веществ чистым растворителем с помощью полупроницаемой перегородки (мембраны), через которую не проходят коллоидные частицы. Периодически или непрерывно сменяя растворитель в приборе для диализа—диализаторе (рис. 26.3), можно практически полностью удалить из коллоидного раствора примеси электролитов и низкомолекулярных неэлектролитов. [c.420]

    Широкое применение полимерных мембран для опреснения сточных вод сдерживается их низкой водопроницаемостью, нестойкостью в щелочных и кислых средах, недостаточной механической прочностью, постепенной и необратимой потерей ионной селективности в процессе эксплуатации. Поскольку мембранное опреснение определяется коллоидно-химическими свойствами, целесообразно разрабатывать методы получения мембран, образованных из дисперсных частиц (динамические мембраны). Для этого достаточно формировать осадки из сильнозаряженных малых коллоидных частиц так, чтобы размер пор при достаточно плотной упаковке не превыщал несколько единиц нм. Осадок (коллоидная мембрана) формируется при фильтрации жидкости, содержащей подобные частицы, через пористую подложку. Если размер пор достаточно мал, осадок формируется только на внещней поверхности подложки. Однако тонкопористая мембрана, как показывают многочисленные эксперименты, возникает (но значительно медленнее) и при диаметре пор порядка микрона, что почти стократно превыщает размер частиц, за счет многослойного прилипания частиц на стенки поры. [c.350]

    Глиняные мембраны, изготовленные Маршаллом (см. гл. III), применялись только в лабораторных экспериментах по измерению ионной селективности. Коллоидные мембраны, разработанные Солнером и его сотрудниками (см. гл. III), хотя и применялись в теоретических иссле о аниях, но не могли быть использованы при промышленном осуществлении электродиализа вследствие их высокого электрического сопротивления. [c.12]

    При выводе этих уравнений принимается, что толщина двойного слоя мала по сравнению с радиусом капилляра. Экспериментальная проверка этих уравнений затруднена ввиду того, что в них входят параметры е, и т], которые не могут быть оценены без произвольных допущений тем не менее уравнения подтверждаются экспериментальными данными, для которых справедливы упомянутые выше ограничения, т. е. для потока через капилляры, сечение которых намного больше размеров молекул [В4]. Несоответствие наблюдалось при работе с мелкопористыми системами например, Мейнгольд и Солф [М23] изучали электроосмос через коллоидные мембраны с размерами пор, изменяющимися от нескольких ангстрем примерно до 50 ммк, и нашли, что электроосмотическое проникно--вение на один ампер [c.106]

    В дальнейших работах свойства пленки в значительной мере связывались со значением pH ириэлектродного слоя. Так, Сна-вели [19] считал, что при электроосажденни хрома из хромовой кислоты на поверхности катода образуется своеобразная коллоидная мембрана. В зависимости от pH заряд коллоидных частиц меняется, причем изоэлектрическая точка находится около pH 6. Ниже этого значения коллоидные частицы заряжены положительно и перемещаются к катоду. Адсорбция сульфат-ионов вызывает замедление движения коллоидных частиц и, следовательно, уменьшает тормозящее действие коллоидной пленки. С изменением условий электролиза меняется pH приэлектродного слоя, что в свою очередь влияет на скорость движения коллоидных частиц. Сна-вели, так же как и Роджерс [20], считает, что восстановление хромовой кислоты идет стадийно и что атомарный водород может принимать участие в промежуточных стадиях восстановления ионов хрома. [c.158]

    Поскольку растворы щестивалентного хрома не способны образовать динамическую мембрану, на первом этапе были проведены эксперименты на смешанных растворах, содержащих МагСггО и СгС1з. Для получения коллоидных частиц Сг(ОН)з в раствор добавляли 0,1 М раствор ЫаОН до pH 4. Анализ зависимости селективности (по общему хрому) и проницаемости от соотношения концентраций шести- и трех-валентного хрома в исходном растворе показал (рис. У1-20), что с возрастанием этого соотношения селективность остается примерно постоянной до величины = 2,5, после чего снижается. Таким образом, для образования динамической мембраны нет необходимости [c.318]

    Как уже отмечалось выше, возможность идентификации форм существования элементов в воде является преимуществом вольтамперометрии. При этом цель исследования состоит в определении содержания различных форм металлов, которые и составляют в сумме общую концентрацию. Обычно наибольшую токсичность имеют гидратированные ионы и их лабильные комплексы, диссоциация которых протекает относительно легко. Наименее токсичными являются устойчивые комплексы металлов и ионы, адсорбированные на коллоидных частицах (69]. Высокой токсичностью обладают и комплексы металлов с липофильными лигандами, поскольку они способны проникать в организм через клеточные мембра- [c.280]

    Высокомолекулярные вещества, растворенные в хорошем растворителе образуют термодинамически обратимые, молекулярные, гомогенные, то есть однофазные, агрегативно устойчивые системы. Однако, в плохо растворяющей или в нерастворяющей среде высокомолекулярные вещества образуют дисперсные системы со свободными поверхностями раздела, поведение которых соответствует типичным микрогетерогенным дисперсным системам. Так, макромолекулы медленно диффундируют в растворе, не проникают через полунепроницаемые мембраны. Однако по некоторым свойствам растворы высокомолекулярных соединений имеют сходство с коллоидными системами, в связи с чем растворы высокомолекулярных соединений иногда называют молекулярными коллоидами. Так, например, размеры макромолекул соизмеримы, или даже превышают размеры коллоидных частиц. Впрочем, эта соизмеримость проявляется лишь по длине макромолекул, поперечные же их размеры соответствуют размерам обычных молекул. [c.28]

    Диализ. Грэм еще в 1861 г. предложил использовать полупроницаемые мембраны для очистки коллоидов путем диализа и для их обнаружения. Чаще всего коллоидную дисперсию помещают в сосуд с дном из мембраны, который погружают в другой сосуд с чистым растворителем. Второй сосуд делают либо очень большим, либо проточным со сменивающимся растворителем. Проходя через мембрану, низкомолекулярные компоненты извлекаются из коллоида. Мембрана подбирается в зависимости от коллоида. Для водных растворов чаще всего используются мембраны из колло- [c.14]

    Ультрафильтрация. Ультрафилырацией называют фильтрование коллоидного раствора через полупроницаемые мембраны, которые укрепляются в специальных ультрафильтрах на твердой пористой подкладке. Поскольку через поры обычной фильтровальной бумаги (от 1,5 до 5 мкм) коллоидно-дисперсные частицы проходят легко, при ультрафильтрации пользуются специальными фильтра- [c.292]

    Рассмотрим основные положения теории мембранного равнове сия. Пусть имеется сосуд, разделенный на две части полупроницаемой мембраной, которая способна свободно пропускать ионы электролитов, но задерживает коллоидные частицы. В одной стороне этого сосуда поменген раствор, содержащий электролит Na+ и коллоидный анион R-, задерживаемый мембраной. По другую сторону мембраны в этом же сосуде находится электролит Na l, оба иона которого могут свободно проходить через мембрану. Состав растворов в сосуде в начале процесса можно представить следующей схемой  [c.305]

    Легко показать, что только введение двух мембран, разделяющих электродиализатор на три части, дает принципиальную возможность очистки коллоидного раствора, находящегося в средней камере. Так, на рис. 94,а схематично представлен процесс электролиза раствора сернокислого натрия, причем образующиеся у электродов кислота и щелочь могут свободно диффундировать вглубь, образуя вновь раствор Ыа2304. Введение одной мембраны, проницаемой для ионов Ыа и 504, будет затруднять диффузию продуктов электролиза и приведет к разложению раствора Ыа2504 на кислоту и щелочь (рис. 94,6). [c.223]

    Рассмотрим наиболее простой случай равновесия Доннана для вещества типа коллоидного электролита состава NaR. Пусть по одну сторону мембраны вначале имеем раствор NaR (I), а по другую —Na l (И) предположим, что мембрана проницаема для всех ионов кроме R". [c.305]

    Сходство растворов ВМС с коллоидными растворами обусловлено гигантскими размерами макромолекул, масса кюторых соизмерима с массой мицелл коллоидов. Те свойства растворов, которые определяются размерами частиц, близки у этих систем. Как и коллоидные растворы, растворы ВМС отличаются медленной диффузией, низким осмотическим давлением л, соизмеримой с коллоидными растворами интенсивностью броуновского движения. Макромолекулы в растворе не способны проходить через полупроницаемые мембраны, задерживаются ультрафильтрами. По оптическим свойствам растворы высокомолекулярных соединений также близки к коллоидным. Они обладают повышенной мутностью, в них наблюдается, хотя и менее четко, эффект Тиндаля. Меньшая интенсивность дифракционного рассеивания света в растворах ВМС обусловлена близостью показателей преломления дисперсионной среды (растворителя) и дисперсной фазы (растворенного полимера). [c.436]


Смотреть страницы где упоминается термин Коллоидные мембраны: [c.386]    [c.127]    [c.85]    [c.52]    [c.16]    [c.48]    [c.223]    [c.384]   
Курс качественного химического полумикроанализа 1962 (1962) -- [ c.218 ]

Курс качественного химического полумикроанализа (1950) -- [ c.146 ]




ПОИСК







© 2024 chem21.info Реклама на сайте