Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неоднородная поверхность

    Рис, 12,6. Совмещение двух крайних структур двойного электрического слоя и результате кристаллографической неоднородности поверхности металла и адсорбции поверхностно-активных ионов [c.274]

    Изложенную методику можно распространить и на более сложные схемы протекания реакций, а также с учетом неоднородности поверхности. [c.102]


    Уменьшение теплоты сорбции все еще продолжает оставаться предметом дискуссий. Одни авторы объясняют это явление неоднородностью поверхности, другие — отталкиванием молекул (или ионов) адсорбата. Заметим, что даже при АНц = О связь 8—И равна Уг О (Н—Н) и составляет 52 ккал. [c.546]

    Анализируя обе рассмотренные модели адсорбции, необходимо заметить, что для каждой изотермы а р) можно привести определенную функцию распределения теплоты адсорбции, однако они не могут быть обоснованы теорией твердого тела. Недостаточно ясен также физический смысл функции Д (а). Поэтому особенно важно найти точные экспериментальные методы исследования взаимодействия молекул в хемосорбционном слое и состояния поверхности адсорбентов. Существенное значение в связи с этим имеют изотопные методы, позволяющие отличить энергетическую неоднородность поверхности и взаимодействие хемосорбированных молекул. [c.278]

    Следовательно, количество адсорбированных частиц, которое пропорционально степени заполнения поверхности 0, является логарифмической функцией времени. Экспоненциальное уменьшение скорости сорбции с увеличением количества адсорбированных частиц может быть легко объяснено увеличением энергии активации хемосорбции с увеличением степени заполнения поверхности . Это может происходить за счет взаимодействия между адсорбированными молекулами [51]. Такое объяснение может быть правильным даже в случае однородных поверхностей. Однако значительно более вероятным является предположение, что этот эффект возникает из-за неоднородности поверхности [52, 53]. [c.551]

    Кристаллическая поверхность твердого тела неоднородна. На ней всегда имеются микроскопические участки, занятые химически активными группами атомов и так называемые поверхностные активные центры, служащие центрами адсорбции. Одной из причин их появления может служить выход разных кристаллических плоскостей на поверхность. Роль такого центра может играть также поверхностный атом основной кристаллической решетки со свободной связью. Появление активных центров может быть связано с неустранимыми дефектами поверхности, например с местом выхода на поверхность дислокаций, где кристаллическая решетка сильно возмущена и где в результате этого возникают очень активные поверхностные атомы. Причиной неоднородности поверхности могут стать способ и характер предварительной ее обработки, приводящей к образованию на монокристаллах ступеней, уступов, широких террас и других подобных дефектов, а также микроскопические примеси постороннего вещества, загрязняющего поверхность. [c.181]


    Каждая металлическая поверхность, как правило, электрохимически неоднородна, т. е. отдельные ее участки имеют разный электродный потенциал и в контакте с электролитом становятся соответственно анодом или катодом (рис. 6.1). Основными причинами электрохимической гетерогенности (неоднородности) поверхности металлов могут быть [291]  [c.279]

    Такое разнообразие причин электрохимической неоднородности поверхности металла свидетельствует о том, что практически всегда имеются условия (при наличии электролита) для электрохимической коррозии металлов. [c.279]

    Уравнение изотермы Лангмюра (УП1-243) и следующие из него упрощенные зависимости были выведены при предположении, что поверхность твердого тела однородна. Они справедливы и для периодически неоднородной поверхности (т. е. такой поверхности, [c.276]

    Неоднородную поверхность можно представить как совокупность участков, каждый из которых характеризуется определенным значением теплоты адсорбции А,-. Тогда долю поверхности, занятую адсорбированным веществом, можно выразить следующим образом  [c.277]

    В пределе распределение активных участков по теплотам адсорбции можно считать непрерывным и ввести дифференциальную функцию распределения р( ). Величина р( ) Я определяет долю неоднородной поверхности, соответствующую участкам с теплотой адсорбции в пределах от до Я -Ь с1Х. В общем случае изотерму адсорбции на неоднородной поверхности можно представить зависимостью  [c.277]

    Влияние поверхности. Для физической адсорбции имеет значение лишь величина поверхности, но химическая адсорбция— весьма специфичный процесс. Так, например, водород хемосорби-руется не окисью алюминия, а никелем, и кислород не окисью магния, а углеродом. Такое поведение согласуется с предположением, что хемосорбция сходна в общем с химической реакцией. На хемосорбцию оказывают влияние физическое состояние поверхности и ее химический состав. Неоднородность поверхности катализаторов доказывается, например, тем, что теплота процесса постепенно снижается по мере протекания хемосорбции. Поверхность состоит из атомов различной степени насыщенности. Атомы у краев кристаллов, трещин и выступов, вероятно, менее насыщены и, следовательно, более активны. [c.206]

    Ход процесса адсорбции в мономолекулярном слое на неоднородной поверхности значительно сложнее, чем на однородной. Дополнительные сведения по этому вопросу можно найти в литературе, указанной в библиографическом списке в конце книги. [c.277]

    Наблюдаемые отклонения от изотермы Лангмюра можно объяснить как неоднородностью поверхности, так и взаимодействием молекул, вызывающим уменьшение теплоты адсорбции с увеличением степени заполнения поверхности адсорбента. [c.278]

    Кинетика реакции на поверхности катализатора. Однородная поверхность. В адсорбционной теории кинетики контактных реакций, предложенной Лангмюром и развитой затем Хиншельвудом и другими учеными, предполагается, что реакция проходит на однородной (или периодически неоднородной) поверхности катализатора между молекулами, адсорбированными в мономолекулярном слое, причем взаимное влияние молекул отсутствует. [c.278]

    Разработанные в настоящее время теории контактных процессов базируются на следующих предположениях 1) реакция проходит на неоднородной поверхности или 2) между адсорбированными на однородной поверхности молекулами существует взаимодействие. [c.280]

    Рассмотрим прежде всего адсорбцию на неоднородной поверхности. Как уже было сказано, в уравнении Лэнгмюра [c.347]

    Уравнения изотермы адсорбции для этих случаев были приведены выше. Кинетические уравнения, выведенные на основании данных предположений, в большинстве случаев обеспечивают расчетные значения скорости контактной реакции, совпадающие с экспериментально найденными. Это, возможно, свидетельствует о правильности как одной, так и другой гипотезы. Однако предположение о неоднородности поверхности получило лучшее обоснование. [c.280]

    Обычно нахождение функции распределения активных мест по теплотам адсорбции для каталитической неоднородной поверхности очень затруднено. Кроме того, часто отсутствуют физико-химические данные, характеризующие реагенты. Поэтому кинетические зависимости, основанные на статистической теории неоднородной поверхности, здесь рассматриваться не будут. Некоторыми понятиями этой теории мы пользовались, разбирая сорбционные явления на поверхности катализатора. [c.280]

    Следует еще раз подчеркнуть, что все рассуждений о механизме адсорбции и кинетике контактных реакций на неоднородной поверхности базируются на гипотетических предположениях, касающихся 1) числа активных участков с различной адсорбционной способностью 2) зависимостей между характеризующими эти активные места величинами, такими как теплота адсорбции, энергия активации адсорбции и энергия активации десорбции. [c.281]


    Экспериментальное определение теплоты адсорбции реагентов затруднено (тем более, что их величина вследствие неоднородности поверхности в значительной мере зависит от степени заполнения этой поверхности). Для многих случаев очень важным становится расчет действительной энергии активации. Опытным путем установлено, например, что для некоторых реакций гидрогенизации кажущаяся энергия активации близка к нулю, действительная же энергия активации составляет 20 ккал/моль. [c.282]

    Роль неоднородности поверхности при адсорбции. [c.418]

    При адсорбции на очень неоднородных поверхностях взаимодействие адсорбат—адсорбат будет маскироваться влиянием этой неоднородности и теплота адсорбции с ростом заполнения не будет увеличиваться. Неоднородность поверхности характеризуется наличием адсорбционных центров с различными энергиями адсорбции. Сначала заполняются центры с большими энергиями адсорбции по мере их заполнения теплота адсорбции падает. Это падение, как правило, настолько велико, что не может компенсироваться возрастающим, 1ю относительно слабым взаимодействием адсорбат—адсорбат. В качестве характерного примера можно привести теплоты адсорбции бензола на графитированной саже и кремнеземе. Дифференциальная теплота адсорбции бензола на саже с однородной поверхностью не зависит от степени заполнения из-за очень слабого взаимодействия между плоскими молекулами бензола (см. рис. XVI, 8, стр. 453). Поверхность силикагеля неоднородна как геометрически (пористость), так и химически (не- [c.502]

    В случае газо-адсорбционной хроматографии обычно пользуются не концентрацией с данного компонента в объеме адсорбционного слоя, а количеством адсорбированного вещества на единицу массы адсорбента а или на единицу его поверхности а=а/з (з—удельная поверхность, см. стр. 439—441). Это вызывается, во-первых, тем, что в адсорбционных опытах непосредственно измеряется не концентрация с , а адсорбированное количество а и, во-вторых, тем, что для адсорбционных слоев на неоднородных поверхностях величина для разных частей поверхности не постоянна. Поскольку мы ограничиваемся здесь областью применения изотермы адсорбции Генри и поскольку мы можем рассматривать величину Сд как среднюю для единицы массы или единицы поверхности адсорбента, то (см. стр. 440) [c.560]

    Методы составлений кинетических уравнений (моделей) гете-ЕОГенных каталитических р.еакцкй. Как правило, многие гетероген -ны е каталитические реакции (как ионного, так и электронного типов) удовлетворительно описываются кинетическими уравнениями пер — во го порядка (особенно в области малых заполнений поверхности катализатора). Это, по —видимому, обусловливается тем, что лимитирующей суммарный каталитический процесс стадией является хемосорбция на однородной поверхности катализатора, осуществляемая мономолекулярно. При этом первый кинетический порядок имеет место обычно независимо от того, осуществляется ли хемо — сорбция по одноцентровому или многоцентровому (в виде мультип — летов, ансамблей и др.) механизмам. Установлено, что большее влияние на кинетический порядок каталитических реакций оказывает неоднородность поверхности. В ряде случаев большая адекватность достигается при использовании кинетических уравнений (моделей), выведенных исходя из представлений неоднородности поверхности (Рогинский С.З., Зельдович Я.Б., Темкин М.И. и др.). [c.98]

    Адсорбция и катализ на неоднородных поверхностях 347 [c.347]

    Теория замедленной рекомбинации была обобщерга в работах Гориучи с сотр. (1936—1938), И. И. Кобозева с сотр. (1937—1946), М. И. Темкина (1941) и др. Из этих работ следует, что учет неоднородности поверхности и сил взаимодействия между адсорбированными атомами приводит к пояЕлению в предлогарифмнческом коэффициенте уравнения (19.31) множителя 1/ 3. Фактор р можно рассматривать как величину, характеризующую природу адсорбции водородных атомов и отражающую тип изотермы адсорбции. [c.410]

    Значительно больший интерес представляет возможность перехода к пассивному состоянию за счет пли блокировки активных центров, или электрохимического торможения реакции растворения. Вследствие энергетической неоднородности поверхности растворяющегося металла переход его иочов в раствор с различных участков совершается с неодинаковой легкостью. Если какое-то число атомов или молекул кислорода (недостаточное для того, чтобы полностью закрыть поверхность) окажется адсорбированным на участках, где растворение может совершаться наиболее легко, то это приведет к резкому падению общей скорости растворения, неэквивалентному доле занятой поверхности. Торможение процесса растворения повысит поляризацию, т. е, сместит потенциал анода в положительную сторону. Такое смещение потенциала будет спо- [c.483]

    Все перечисленные явления приводят к тому, что в реальном кристалле число дефектов значительно превышает аналогичную величину для гипотетического идеального кристалла. Разнообразные нарушения поверхности резко увеличивают адсорбционноактивную поверхность, а следовательно, и число адсорбционных и каталитических центров. Поскольку в реальном кристалле на зушения решетки могут быть самыми различными, активные центры могут обладать разным адсорбционным нотенциа-лом, т. е. возникает энергетическая неоднородность поверхности. Псэтому естественно, что в теориях гетерогенного катализа, как правило, в той или другой степени учитывается реальное ст )оение активной поверхности. Рассмотрим три модели. [c.341]

    Окислительно — восстановительные реакции. Из двух перечисленных выше типов реакций в гетерогенном катализе наиболее изучены окислительно — восстановительные. Они широко использовались как модельные реакции при разработке многих частных теорий катализа (промежуточных химических соединений Сабатье и В.Н. Ипатьева, мультиплетной теории A.A. Баландина, активных ансамблей Н.И. Кобозева, неоднородной поверхности Р.З. Рогин — ского, химической концепции катализа Г.К. Борескова и др.) и в особе нности при решении центральной проблемы в гетерогенном ката изе — проблемы предвидения каталитического действия. Успешное ее решение позволит создать научную основу подбора оптимальных катализаторов и разработать единую теорию катализа, обла/,,ающую главным достоинством — способностью предсказывать, а не только удовлетворительно объяснять наблюдаемые от — делььые факты. [c.159]

    Представленные данные, по-видимому, хорошо согласуются с об.ъясие-нпем на основе простейшей изотермы Ленгмюра. Однако это объяснение ни в коей мере не является обш им. Более часто в широком диапазоне давлений можно найти, что данные нельзя описать с помощью реакции простого порядка или простой изотермы Ленгмюра. В этнх случаях приходится но только учитывать неоднородность поверхности, но и использовать белое сложные уравнения адсорбции. Это обычно позволяет описать экспериментальные данные с помощью простого химического механизма. Однако сложность конечных выражений и большое число параметров сильно усложняют объяснение кинетики реакции. В связи с этим возникает необходимость раздельного получения данных по изотермам и кинетике реакций. Трудност1> этой задачи является одним из главных нренятствип на нути выяснения механизма каталитических реакций. [c.546]

    Темкин и сотр. [22] подошли к решению вопроса с помощью метода, аналогичного рассмотрению сложной изотермы Ленгмюра, чтобы объяснить сложную кинетику раСпадя КНз на поверхности железа. Теоретическое исследование неоднородности поверхности было проведено в работе [23]. [c.546]

    Неоднородная поверхность. Применение теории адсорбции на неоднородной поверхности для разработки кинетических уравнений приводит к сложным зависимостям, что не дает возможности непот средственного их использования для технических целей. [c.280]

    Результаты исследования состояния платины в катализаторах, промотированных фтором, методом ИК-спектроскопии адсорбированного оксида углерода приведены на рис.. 2.4, Степень заполнения платины оксидом углерода изменяли путем термодесорбции при различных температурах, Зависимость частоты колебания хемосорбированиого оксида углерода от степени заполнения может быть вызвана двумя причинами взаимным влиянием хемосорбированных частиц оксида углерода и неоднородностью поверхности платины. В области малых заполнений взаимным влиянием хемосорбированных частиц можно пренебречь, и частота колебаний оксида углерода характеризует состояние платины. Полученные данные (рис. 2.4) указывают, что фторирование алюмоплатинового катализатора приводит к существенному сдвигу частоты колебания оксида углерода в высокочастотную область, т. е., что в промотированных фтором образцах платина является более злектрондефицитной, чем в нефторированных. Возможно, фторирование усиливает акцепторные центры носителя, с которыми взаимодействует платина. Повышение частоты колебаний оксида углерода сопровождается явлениями ослабления прочности связи платина - углерод, что выражается в уменьшении температуры десорбции на 100 °С. [c.49]

    Некоторые другие теории адсорбции также применялись для изучения кинетики реакций. Брунауэр, Эмметт и Теллер расширили теорию Лэнгмюра, и их уравнение, часто обозначаемое как уравнение БЭТ, нашло широкое применение для измерения поверхности твердых частиц (см. пример УИ-1). Хорошо известное уравнение изотермы Фрейндлиха приводит к очень простым и часто используемым уравнениям скорости (см. стр. 224). Весьма полезное уравнение, описывающее кинетику синтеза аммиака, предложено Темкиным и Пыжовым . Эти исследователи применили уравнение адсорбции, отличающееся от уравнения Лэнгмюра тем, что при его выводе учтена неоднородность поверхности, а также принято, что теплота адсорбции линейно уменьшается с увеличением степени насыщения поверхности. Уравнение Темкина и Пыжова приведено в задаче УП-9 (стр. 237). [c.208]

    Обычн > поверхность активных адсорбентов неоднородна, что связано с особенностями их получения и строения (см, стр. 503 н след.). Неоднородность поверхности сильно усложняет трактовку явления адсорбции. Поэтому для получения простейших закономерностей обращаются к однородным поверхностям. Примером адсорбента с практически однородной поверхностью является сажа, прокаленная при температуре около 3000 С поверхность ее частнц состоит в основном из базисных граней графита. [c.439]

    Для ие очень неоднородных поверхностей при достаточно высоких температурах и небольших величинах адсорбции (небольшом заполнении поверхности) сделанное допущение о справедливости уравнения изотермы адсорбции Геири оправдывается. [c.561]

    Остановимся также на разработанном в последние годы дифференциально-изотопном методе (С. 3. Рогинский, Н. П. Кей-ер) обнаружения неоднородности поверхности, суть которого заключается в следующем. На поверхности сначала адсорбируется определенная порция газа одного изотопного состава, а затем порция другого изотопного состава вслед за этим производится десорбция отдельных порций газа и анализ их изотопного состава. Если изучаемая поверхность однородна, то со-стаз десорбируемого газа должен быть средним по сравнению с разновременно адсорбированными порциями, поскольку [c.333]

    Прн некоторых аналитических видах зависимости I(Q) интеграл (XIII, 13) или не берется в конечном виде в элементарных функциях, или получаемые выражения громоздки и неудобны для практического применения. Поэтому в теории процессов на неоднородных поверхностях важную роль играют методы приближенного решения уравнений типа (XIII, 13). Остановимся на методе приближения, развитом в исследованиях С. 3. Рогинского. [c.348]


Смотреть страницы где упоминается термин Неоднородная поверхность: [c.494]    [c.85]    [c.86]    [c.532]    [c.547]    [c.600]    [c.331]    [c.334]    [c.339]    [c.341]   
Диффузия и теплопередача в химической кинетике (1987) -- [ c.19 ]

Адсорбция газов и паров Том 1 (1948) -- [ c.109 , c.699 ]

Адсорбция газов и паров (1948) -- [ c.109 , c.699 ]

Диффузия и теплопередача в химической кинетике Издание 2 (1967) -- [ c.19 ]




ПОИСК







© 2025 chem21.info Реклама на сайте