Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность активная, модель

    В общ,ую процедуру принятия решений при оптимизации пористой структуры катализатора, рассмотренную в разд. 3.1, входит в качестве обязательного этапа составление математической модели гетерогенно-каталитического процесса на зерне катализатора и идентификация ее параметров. Эта модель должна отражать как геометрические характеристики структуры зерна, так и важнейшие особенности собственно физико-химических процессов, протекаюш,их в нем. Для наглядности представления последних удобно мысленно выделить фиксированную группу молекул исходных веществ, которая участвует в ряде последовательных физико-химических стадий суммарного контактного процесса на зерне катализатора 1) перенос исходных веществ из реакционной смеси к внешней поверхности частиц катализатора 2) перенос исходных веществ от внешней поверхности частиц катализатора к их внутренней поверхности 3) адсорбция исходных веществ на активных центрах катализатора 4) реакция между адсорбированными исходными веществами и перегруппировка адсорбционного слоя 5) десорбция продуктов реакции 6) перенос продуктов реакции от внутренней поверхности частиц катализатора к их внешней поверхности 7) перенос продуктов реакции от внешней поверхности катализатора в объем реакционной смеси. [c.149]


    Сравнение реакционной способности ступенчатых поверхностей кристалла с реакционной способностью нанесенных Р1-катализаторов показывает, что структура полидисперсных частиц Р1 в катализаторе может быть с успехом воспроизведена ступенчатыми поверхностями. Установлено, что атомарные ступени играют определяющую роль при превращениях углеводородов, а также при диссоциации Н2 и других двухатомных молекул с большой энергией связи [237]. Показано, что реакция дегидрирования циклогексана до циклогексена не зависит от структуры поверхности монокристалла Р1 (структурно-нечувствительная реакция). В то же время реакции дегидрирования циклогексена и гидрогенолиза циклогексана структурно-чувствительны. В свете полученных результатов предложена [238] расширенная классификация реакций, зависящих от структуры поверхности металла. А именно, предложено отнести к особому классу реакции, скорость которых зависит от размера активных частиц катализатора или от плотности атомарных ступенек и выступов на них, и реакции, скорость которых зависит от вторичных изменений структуры поверхности катализатора (например, из-за образования в ходе реакции углеродистых отложений, а также других эффектов самоотравления). На основе проведенного анализа предложена модель каталитически активной поверхности Р1, учитывающая атомную структуру поверх- [c.165]

    Одним из главных вопросов любой теории гетерогенного катализа является вопрос о модели активного центра на поверхности катализатора. Впервые представление об активном центре было развито Тейлором. По Тейлору, поверхность катализатора не является идеальной, ровной поверхностью. На ней могут быть трещины, ребра, дефекты кристаллической решетки. Энергетические свойства разных участков поверхности могут сильно различаться. Каталитически активными центрами может быть небольшая часть дефектов поверхности. Причиной каталитической активности Тейлор считал ненасыщенность связей в атомах, находящихся в активном центре. По Тейлору, активными центрами являются пики , вершины на поверхности катализатора. [c.655]

    Ез =37000 кзо =0,0184 р =0,766 < , =0,71 С =0,776. Наблюдаемая нестандартность процесса вызывается, вероятно, изменением активности катализатора и, в частности, его удельной поверхности. Погрешность модели по ХаС З не более 3%. [c.173]


    Перейдем к обсуждению кластерных моделей. Привлекательность таких моделей обусловлена многими и серьезными причинами. С расчетной точки зрения — это возможность применения квантовохимических методов, разработанных для молекул, а в этом плане в квантовой химии имеются вполне определенные достижения. Такие модели наглядны и гибки, они позволяют легко описать структурно выделенные места решетки (узлы, ребра, грани), различные структурные дефекты, те или иные примеси и т.д. Они естественны, поскольку соответствуют бытующим в литературе по химическому катализу представлениям о повышенной каталитической активности отдельных мест поверхности (активных центров). Такой подход акцентирует внимание на химизме катализа, что соответствует общей тенденции в современном развитии теории катализа. Многие катализаторы являются аморфными, важный класс каталитически активных систем составляют подложки с нанесенными примесными центрами (нанесенные катализаторы), во всех подобных случаях появляются и опреде- [c.284]

    Стабильный окисел в первую очередь возникает на активных центрах поверхности, блокируя их по мере убывания теплоты адсорбции гидроксильного радикала. На участках электрода, закрытых нестабильным окислом, скорость РВК лимитируется отрывом первого электрона от воды или иона гидроксила, причем эта часть поверхности соответствует модели равномерной неоднородности, из опыта фактор неоднородности / = 10 — 12 при = = 0,5 пленка пассивирующего окисла в области 1,5—2,0 в не сплошная, а состоит из отдельных молекул или небольших островков, локализованных на активных участках поверхности. По мере роста потенциала островки смыкаются друг с другом и РВК переходит на поверхность этого окисла. Механизм РВК здесь, по-видимому, иной — процесс протекает с участием в лимитирующей стадии активных окислов, которые стабилизированы на электроде из-за высокой энергии связи в координационной сфере комплекса. [c.188]

    Представление о несоответствии активной и полной поверхностей частиц (модель раскрытия поверхности частицы) сохраняет свое значение и при анализе тепло- и массообмена в неподвижном и псевдоожиженном слоях. Отдельные положения этой модели в разных вариантах использованы многими авторами [17, 21, 54. 69, 85, 89—92]. [c.162]

Рис. 4.22, Адсорбция катионогенного поверхностно-активного вещества на отрицательно заряженной поверхности адсорбента. Модель адсорбции катионогенного (а - в) и анионогенного (г) поверхностноактивных веществ. Рис. 4.22, Адсорбция <a href="/info/311511">катионогенного поверхностно-активного вещества</a> на отрицательно <a href="/info/794564">заряженной поверхности</a> адсорбента. <a href="/info/29958">Модель адсорбции</a> катионогенного (а - в) и анионогенного (г) поверхностноактивных веществ.
    С помощью тщательных кинетических исследований реакций с участием твердых веществ можно будет лучше понять эти вещества, многие аспекты структуры которых до сих пор неясны. Необходимо найти связь между измеряемыми химическими свойствами — кинетическими параметрами, характеризующими сродство к жидким и газообразным реагентам,— и физическими свойствами веществ. Эти корреляции позволят яснее представить природу связей, образующихся между твердым веществом и находящимися на нем молекулами жидкости или газа, и, возможно, уточнить модель поверхности твердых веществ. С другой стороны, учитывая аналогию между реакционной поверхностью раздела и поверхностью активного твердого катализатора, можно надеяться, что успехи в области превращений твердых веществ будут способствовать прогрессу гетерогенного катализа. [c.458]

    Сопоставляя адсорбционную и химическую модели граничного трения, нетрудно заметить, что как в том, так и в другом случаях большое значение имеет адсорбция присадок на металлической поверхности. И если в первом случае значение адсорбции определяется самой моделью, то во втором изучение адсорбции важно для установления той концентрации активного вещества на поверхности трения, от которой при прочих равных условиях зависят глубина и скорость химического модифицирования поверхности трения, а следовательно, и уровень противоизносных свойств. [c.246]

    Кроме того, теория пресыщения не дает конкретной модели активной поверхности. Однако представление о том, что в конечном счете катализатор тем активней, чем больше его состояние отклоняется от равновесного идеального состояния, может быть полезно экспериментатору, готовящему катализатор. [c.338]

    Дефекты кристаллической решетки и модель активной поверхности в теориях гетерогенного катализа [c.339]

    Кинетические уравнения дезактивации катализаторов отложениями кокса. Активность катализаторов превращения углеводородов существенно уменьшается при отложении на их поверхности кокса. Поскольку образование кокса из углеводородов является значительно более медленной реакцией, чем их другие превращения, обычно коксообразование и связанную с ним дезактивацию катализаторов рассматривают независимо. В работе [1] проведен анализ причин дезактивации и используемых для ее описания формальных кинетических моделей. Если использовать в качестве меры активности величину активной поверхности катализатора 5, то наиболее часто используемое уравнение скорости дезактивации имеет вид  [c.135]


    Положение о том, что лишь один атом металла принимает участие в образовании я-частицы, не означает отсутствия влияния остальных атомов поверхности. Специфичность металла проявляется в сравнительной легкости образования с- и я-частиц, а его кристаллическая упаковка влияет на природу орбиталей, предоставляемых металлом для образования я-связей. По легкости формирования я-комплексов металлы УП1 группы располагаются в ряд Р(1 Р1 > N1 > КЬ [15]. По мнению Го, Руни и Кемболла [15], образованием и разложением промежуточных я-связанных металлорганических комплексов объясняется каталитическая активность переходных металлов во многих реакциях углеводородов гидрирования, дегидрирования, дейтерообмена, изомеризации, конфигурационной изомеризации и крекинга. Приведенные ниже примеры иллюстрируют распространившуюся тенденцию объяснять механизмы самых разнообразных реакций углеводородов с помощью я-комплексов. Учитывая сказанное выше, можно думать, что в случае бензола более энергетически выгодной, а следовательно, и более вероятной является модель XX. Руни [21] изображает гидрирование бензола как процесс [c.53]

    Вторая группа факторов, определяющих степень понижения прочности твердых тел под действием активных сред, связана с условиями, в которых протекают процессы деформации и разрущения, т. е. имеет кинетический смысл. Различия в скорости разнообразных природных процессов могут быть чрезвычайно велики (интервал значений характеристического времени растянут на 20 порядков величины). Поэтому в тех случаях, когда скорость модельного процесса сильно отличается от скорости в естественных условиях, адекватность модели может быть обеспечена выбором других параметров, также не похожих на природные, и вывод о степени правдоподобия того или иного механизма возможен лишь на основе анализа некоего комбинированного критерия подобия, учитывающего межфазные взаимодействия на поверхностях раздела. [c.94]

    Покажем характерные особенности предлагаемого подхода к решению поставленных задач на примере построения процедуры оценки макрокинетических констант модели зерна, осуществляемую на основе адсорбционных измерений. Будем полагать, что вследствие высокой скорости протекания многих адсорбционных процессов влиянием внешней диффузии нельзя пренебречь. Поэтому предполагаем перенос массы при адсорбции индикатора на испытываемом образце катализатора, происходящем в три последовательные стадии 1) из объема газа к внешней новерхности катализатора 2) внутри пор катализатора 3) из объема поры к внутренней активной поверхности (обратимая адсорбция на активных центрах). [c.163]

    Если доля обрыва цепей на поверхности пренебрежимо мала или если поверхность благоприятствует протеканию процесса в нужном направлении (инициирует радикалы, разлагает побочные нестабильные промежуточные продукты и т. п.), то здесь интенсификация теплоотвода и оптимизация реакции достигается максимальным усилением перемешивания и особых проблем не возникает. Иначе обстоит дело при вредном влиянии поверхности за счет обрыва цепей или разложения активных промежуточных продуктов. Тогда направления интенсификации теплообмена и повышения скорости и (или) селективности реакции противоположны. Эту противоположность нельзя обычно устранить каким-либо покрытием поверхности, поскольку, как правило, неактивные в химическом плане поверхности (фосфорные, борные или силикатные эмали) мало теплопроводны. Кроме того, часто вообще не удается подобрать инертное покрытие. В таком случае задачу надо решать расчетом, подбирая решение, оптимальное в химическом или экономическом смысле. Основой такого решения будет математическая модель реактора, представляющая собой систему кинетических уравнений вида (2.5), дополненную уравнениями гибели радикалов на стенке и (или) разложения на стенке кинетических промежуточных продуктов реакции. Без уточнения механизма реакции такую систему с учетом принципа Боденштейна для проточных аппаратов полного смешения (более частый [c.103]

    На поверхности катализатора бензол может адсорбироваться либо всей плоскостью, либо одним из ребер. По А. А. Баландину это будут соответственно секстетная и дублетная модели. В случае плоскостной хемосорбции (секстетная модель) размеры молекулы бензола и расстояния между атомами металла должны соответствовать друг другу. Мультиплетная теория А. А. Баландина по параметрам решеток металлов постулирует, что катализаторами гидрирования и дегидрирования могут быть только металлы никель, кобальт, медь, рутений, иридий, палладий, платина, родий, осмий,. рений. Это подтверждено экспериментально, за исключением меди, на которой гидрирование бензола часто не наблюдалось. Однако считают что это исключение кажущееся и незначительная активность меди объясняется энергетическими факторами. [c.131]

    При наличии гранул пористого катализатора реакция протекает на внешней поверхности и внутри самих гранул. Согласно квазигомогенной модели поры малы при сопоставлении с размером гранул и равномерно пронизывают ее. Реакция происходит,во всей грануле катализатора и активность характеризуется эффективной константой скорости, а перенос вещества — эффективным коэффициентом диффузии. Эта модель противоположна модели нереагирующего ядра с определенной зоной реакции, которая кажется целесообразнее и реальнее для большинства некаталитических реакций в системах газ—твердое вещество, описанных в главе ХП. [c.411]

    Вторым уровнем для реактора с неподвижным слоем является модель процесса на одном пористом зерне катализатора. Составные части указанной модели представляют собой стадии переноса вещества и тепла внутри зерен катализатора и химического превращения на активной поверхности. Связи между стадиями описываются уравнениями материального и теплового балансов. Третьим уровнем служит модель в элементе неподвижного слоя с учетом процессов [c.464]

    Все перечисленные явления приводят к тому, что в реальном кристалле число дефектов значительно превышает аналогичную величину для гипотетического идеального кристалла. Разнообразные нарушения поверхности резко увеличивают адсорбционноактивную поверхность, а следовательно, и число адсорбционных и каталитических центров. Поскольку в реальном кристалле на зушения решетки могут быть самыми различными, активные центры могут обладать разным адсорбционным нотенциа-лом, т. е. возникает энергетическая неоднородность поверхности. Псэтому естественно, что в теориях гетерогенного катализа, как правило, в той или другой степени учитывается реальное ст )оение активной поверхности. Рассмотрим три модели. [c.341]

    Целесообразность использования ячеечной модели доказана решение.м задачи идентификатош структуры потоков на основании кривых отклика, полученных при нанесении стандартного ступенчатого воздействия по расходу диоксида углерода, дозируемого в исходный синтез-газ. Математическая модель каждой ячейки включает уравнения материальных балансов для определения концентраций компонеигов в газовом потоке, в твердой фазе, на поверхности активных центров в микропорах, а также уравнения тепловых балансов для определения температуры газового потока и катализатора. Использование модели требует выявления закономерностей, определяющих физико-химические и ки- [c.64]

    Уменьшение тока на I участке связано с образованием слабозащитного слоя оксида железа. Рост тока на II участке во времени обусловлен уменьшением толщины слоя электролита и более легким доступом кислорода к металлической поверхности. На участке III происходит полное высыхание поверхностного слоя электролита и ток падает до очень малой величины электрохимическая активность модели поддерживается еще некоторое время только за счет внутренней влаги, удерживаемой сформировавшимся оксидом железа. [c.16]

    Основное отличие модели растворения титана Капрани от модели Келли заключается, в следующем. Капрани считает, во-первых, в комнлексообразовании обязательно принимают участие анионы раствора и, во-вторых, пытается учесть наличие на поверхности активно растворяющегося титана слоя гидрида. Нам представляется, что модель Капрани носит более общий характер и поэтому более справедлива. Действительно, Я. М. Колотыркин [53] сделал общий вывод о том, что процессы растворения и пассивации металлов в водных растворах не могут быть объяснены только реакциями в системе Me—Н2О— —Н+—0Н . Важное значение для процессов растворения металлов имеет хемосорбция компонентов раствора на поверхности металла. Поэтому в растворах галогенидов, особенно при повышении их концентрации, должны преобладать реакции растворения типа (2.12) и (2.15). Ниже при обсуждении особенностей поведения титана в высококонцентрированных растворах хлоридов будут приведены и соответствующие экспериментальные данные о влиянии a i- на активное растворение титана. Естественно, одновременно может происходить параллельное растворение по реакциям (2.1) — (2.5), доля которых в общем балансе должна возрастать в разбавленных растворах. [c.28]

    Постановка задачи идентификации. Процесс адсорбции реагентов на катализаторах принято рассматривать протекающим в 4 стадии диффузия в объеме газовой фазы диффузия из объема газа к внешней поверхности катализатора диффузия внутри пор катализатора диффузия из объема поры к внутренней поверхности (обратимая адсорбция на активных центрах [56, 57]). Такому упро-щеннохму механизму соответствует математическое описание процесса адсорбции в зернах катализатора, модель пористой структуры которого предлагается квазигомогенной, в следующем виде  [c.212]

    Известно, что при сплавлении окиси алюминия с кислым сульфатом калия получаются квасцы . Можно показать термодинамически, что реакция взаимодействия АЬОз с К2504 и 50з протекает с образованием квасцов в широком интервале тем-перапф (величины изобарно-изотермического потенциала этой реакции при 0° С и 700° С соответственно равны 111,63 и 13,28 ккал). Рассчитать же термодинамически реакции взаимодействия кремнезема с отдельными составляющими активного компонента невозможно из-за отсутствия необходимых данных. Поэтому необходимо экспериментально доказать предположение о связывании К2О носителем. Для этого была исследована активность моделей катализаторов при разных температурах. В качестве носителей использовались природный кварц, кварцевое стекло, корунд и карборунд, которые сохраняют постоянную поверхность и дают возможность изучить влияние химических процессов, в чистом виде . Первые три вещества моделируют главные компоненты носителя, а карборунд был выбран как инертное вещество, не способное вступать во взаи- [c.51]

    Подобные модели могут быть предложены п для окисиых катализаторов, имеющих на поверхности активные центры — по всей вероятности атомы переходных металлов, способные образовывать координационные комплексы (циклические). Только в связи с этим этапом можно говорить о радпкальнол плп ионном механизме. [c.305]

    Дальнейшее развитие теории двойного электрического слоя было дано в работах Фрумкина и его школы, Бокриса, Деванатхана, Есина, Мюллера, Парсонса, Эршлера и др. Наибольшее признание и распространение получила модель двойного электрического слоя, предложенная Грэмом (1947). Согласно Грэму, обкладка двойного электрического слоя, находящаяся в растворе, состоит не из двух, как предполагал Штерн, а из трех частей. Первая, считая от поверхности металла, называется внутренней плоскостью Гельмгольца, в ней находятся лишь поверхностно-активные ноны либо если их нет в растворе, молекулы растворителя-. В первом случае заряд плоскости равен <71, во втором — нулю ( 71 = 0), потенциал ее, отнесенный к раствору, обозначается ч( рез г 5). Следующая, удаленная от поверхности металла на расстояние, до которого могут подходить ионы (центры их заряда) в процессе теплового движения, называется внешней плоскостью Гельмгольца ее общий заряд, отнесенный к единице поверхности, равен /2, а потенциал плоскости -фг- [c.271]

    Задача оценки переменных состояния химико-технологического процесса, к которым можно отнести температуру, дав.ттение, составы фаз, расходы жидких и газообразных среди т. д., состоит в том, чтобы по показаниям измерительных приборов, функционирующих в условиях случайных помех, восстановить значения переменных состояния системы, наиболее близкие в смысле заданного критерия к истинным значениям. Применительно к химико-технологическим процессам важность решения задач оценки переменных состояния и определения неизвестных параметров модели объекта имеет три аспекта открывается возможность получать непрерывно информацию о тех переменных состояния слон<-ного объекта, непосредственное измерение которых невозможно по технологическим причинам (например, концентрации промежуточных веществ, параметры состояния межфазной поверхности, доля свободных активных мест катализатора и т. п.) реализация непрерывной (в темпе с процессом) оценки переменных состояния и поиска неизвестных параметров модели создает предпосылки для прямого цифрового оптимального управления технологическим процессом решение задач идентификации решает проблему непрерывной оптимальной адаптации нелинейной математической модели к моделируемому процессу в условиях случайных помех и дрейфа технологических характеристик последнего, что необходимо для осуществления статической и динамической оптимизации. [c.283]

    Получило дальнейшее развитие предположение о высокой активности в реакции дегидроциклизации комплексных активных центров, содержащих ионы Pt +, химически связанные с поверхностью носителя — AI2O3 [188]. Так, в работах Н. Р. Бурсиан с сотр. [189—192] исследована структура активных центров алюмоплатиновых катализаторов в реакции Сб-дегидроциклизации н-гексана. На основании изучения с помощью экстракционного метода промотирующего действия щелочных металлов (Li, Na, s) на Pt-контакты, а также исходя из полученных данных об отсутствии связи между кислотными и ароматизирующими свойствами изучаемых катализаторов, предложена модель комплексного активного центра, содержащего ион Pt +. [c.256]

    Это значит, что с ростом температуры число активных центров на единицу поверхности сначала растет и, только начиная с определенной температуры, убывает. Подобные кривые невозможно объяснить, исходя из представления о спекании как о поверхностном плавлении активных центров или исходя из эффекта, связанного с уменьшением общей повмхности с повышением температуры. Это явление с позиций термодинамики было рассмотрено О. П. Пол-торакои, который исходил из следующей модели активные центры являются атомной фазой , адсорбированной на поверхности кристалла. При этом оказалось, что для мелкодисперсных кристаллов количество атомной фазы иа единицу поверхности уменьшается с ростом кристаллов. Таким образом, с изменением температуры протекают два конкурирующих процесса сначала при повыщении температуры обработки катализаторов увеличивается число дефектов, а следовательно, и их поверхностная концентрация ири дальнейшем повышении температуры увеличение числа дефектов и их подвижности приводит к росту кристаллов, а следовательно, к уменьшению поверхностной концентрации дефектов. [c.338]

    Таким образом, чисто структурные соображения диктуют необходимость существования внешней части граничного слоя, являющегося как бы связующим элементом между резко различающимися структурами адсорбционно и осмотически связанной воды. Стремление к сочетанию с обеими указанными категориями связанной воды естественно приводит к относительно разупорядоченной структуре внешней части граничного слоя число молекул воды с разорванными Н-связями в ней выше, чем в объемной жидкости. Поскольку действие активных центров поверхности на молекулы воды внешней части граничного слоя ослаблено, то ее плотность должна быть ниже, чем у объемной воды, что и подтверждается уже обсуждавшимися данными [104]. Анализируя структуру воды вблизи твердой заряженной поверхности, Ю. В. Гуриков [126] также пришел к трехслойной модели связанной воды за слоем прочно связанных с поверхностью молекул воды располагается слой с нарушенной структурой, затем следует невозмущенный раствор. [c.42]

    Описание физико-химических явлений, составляющих гетерогенно-каталитический процесс в порах катализатора, опирается на рассмотренную классификацию геометрических моделей пористых сред, в частности на иерархичность их строения, в которой выделяются несколько уровней организации пористой структуры 1) молекулярная и субмолекулярная структура катализатора — плотность и характер расположения активных центров, дефектов кристаллической решетки, кристаллическое строение, состояние поверхности 2) поровая структура — форма нор, связность порового пространства, суммарная внутренняя поверхность, распределение пор по размерам 3) зерновой (гранулометрический) состав катализатора — текстура катализатора, форма частиц катализатора, распределение зерен по размерам и по объемам  [c.139]

    Так, например, расход воздуха на входе в турбокомпрессор-ное отделение в зависимости от условий работы системы может колебаться в пределах от 70 до 115% от своего номинального значения. Изменения качества сырья и неравномерность его подачи в камеру сгорания приводят к возникновению неопределенности в расходе серы на входе в печное отделение. В свою очередь, этот факт совместно с колебаниями в режиме работы самой печи сжигания серы вызывает неопределенность концентрации диоксида серы на входе в контактно-абсорбционное отделение в пределах 1—1,5%. В реакционной смеси, подаваемой на слои контактной массы, неизбежно содержатся примеси веществ, отравляющих катализатор и снижающих его активность. Состав этих примесей и их количество постоянно меняются в процессе функционирования системы. В силу этих причин активность катализатора также не может быть представлена детерминированной величиной и должна рассматриваться в качестве неопределенного параметра. В ходе эксплуатации системы на теплопередающей поверхности аппаратов образуется слой загрязнений, что приводит к необходимости учета неопределенности по коэффициентам теп.попере-дачп. Дополнительную неопределенность в значении коэффициентов теплопередачи вносит неточность его расчета по соответствующим уравнениям математической модели (см. табл. 6.1). [c.273]

    Процесс образования новых поверхностей в новом теле под нагрузкой связывают с явлением разрушения. Если тело изолировано от внешней среды, разрушение происходит без потери массы. В противном случае разрушение сопровождается с той или иной степенью потери массы в зависимости от активности внешней среды. В некоторых случаях для возникновения разрушения необязательно приложение внешней нагрузки, например, при коррозионном воздействии, хотя в ряде случаев существенно ускоряет его. Разрушение рассматривается не как элементарный акт, а как процесс постепенного образования новых поверхностей в микро- и макромасштабах. В связи с этим механизм разрушения изучают в двух аспектах физика разрушения, базирующаяся на атомных, дислокационных и других моделях и механика разрушения, в основу которой положены модели и реальные конструкции с макроскопическими дефектами (трещинами). В процессе нагружения твердого тела совершается работа и в материале возникают сильг сопротивления деформированию, оцениваемые компонентами тензора напряжений и деформаций. В определенный момент времени какой-либо механический фактор Q (движущая сила разрушения) достигает некоторого критического значения К (рис.2.7), после чего конструкция переходит в новое состояние (текучесть, разрушение, изменение первоначаль- [c.75]


Смотреть страницы где упоминается термин Поверхность активная, модель: [c.6]    [c.41]    [c.138]    [c.268]    [c.269]    [c.340]    [c.540]    [c.51]    [c.341]    [c.341]    [c.342]    [c.345]    [c.184]    [c.21]    [c.165]   
Курс физической химии Том 2 Издание 2 (1973) -- [ c.318 ]




ПОИСК





Смотрите так же термины и статьи:

Модели поверхности



© 2024 chem21.info Реклама на сайте