Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан в стеклах

    Титан. Пленка окиси титана обладает хорошими адгезионными свойствами к стеклу, а прочность сцепления превосходит прочность сцепления ковара со стеклом. Титановые стержни после обезгаживания в печи с защитной атмосферой или в пламени горелки (в течение 5 мин), шлифовки и обезжиривания поверхности в спирте прогревают в окислительной зоне пламени до образования на поверхности окисла желтого цвета, а затем остекловывают приемом обмотки , нагревая в восстановительной зоне пламени горелки. Хорошо согласуются с титаном стекла № 23, ХУ-1. В эти сорта стекла можно впаивать и неширокие пластины из титана. Спай получается вакуумноплотным и в холодном состоянии имеет темно-синеватый цвет. [c.142]


    Клеи в виде пленки обеспечивают более высокие значения прочности, чем клеи на растворителях. С экономической точки зрения они целесообразны для длительной эксплуатации при температурах выше 160 °С. Этими клеями рекомендуется склеивать металлы (включая медь, медные сплавы и титан), стекло, керамику и фенопласты. Большое значение они имеют в производстве сотовых конструкций, причем жидкие клеи обеспечивают более высокую прочность при отдире, а пленочные — при срезе. [c.118]

    Очень чистые металлы получают термическим разложением тетра-иодидов Э14 при высокой температуре в вакууме. На рис. 222 изображен сосуд из стекла пирекс для получения чистого титана. Через отверстие 1 поступают порошкообразный титан и иод, через отверстие 2 откачивают воздух. В ходе процесса сосуд нагревают до 600" С и электрической печи, а титановая проволока 3 нагревается электрическим током. При 200° С титан и иод взаимодействуют с образованием Til 4, кото )ЫЙ при 377° С сублимирует. Пары Til 4 при соприкосновении с титановой проволокой, нагретой до 1100—1400° С, разлагаются металлический титан оседает на проволоку, а пары иода конденсируются на холодных частях прибора. [c.531]

    Чтобы предупредить подобные аварии, в хлорной промышленности для изготовления аппаратов широко применяют свинец, титан, специальные сорта стали, графит, стекло и фарфор. В качестве защитного покрытия стальных изделий в последние годы стали применять полиэтилен, фторопласт, фаолит, винипласт и другие полимерные материалы. Для уменьшения коррозии стальной аппаратуры и трубопроводов Необходима осушка хлора, углеводородов и хлорпроизводных продуктов. [c.117]

Рис. 303. Изменение кон-центрации кислорода в морской воде в щели (стекло-титан) в зависимости от времени при ширине зазора, мм / — 3,5 2 — 2,7 з — 2,0 Рис. 303. Изменение кон-<a href="/info/937764">центрации</a> кислорода в <a href="/info/69623">морской воде</a> в щели (<a href="/info/501232">стекло-титан</a>) в зависимости от времени при ширине зазора, мм / — 3,5 2 — 2,7 з — 2,0
    В качестве конструкционных материалов насадки используются металлы и сплавы (углеродистая сталь, нержавеющие стали, никель, монель, хастеллой, титан, бронза, алюминий), пластические массы, керамика, стекло, графит. [c.47]


    Отливки цз алюминия и магния чистые и слаболегированные Штамповки (чистые и низколегированные) сталь, алюминий, магний, серебро, никель, вольфрам, титан Неметаллы стекло, фарфор Пластики (полистирол, оргстекло, резина) Отливки алюминиевые и магниевые сплавы, низколегированная сталь, чугун со сфероидальным графитом Штамповки медь, латунь, бронза, металлокерамика [c.278]

    Активированный уголь — прекрасный поглотитель остатков газов, могущих десорбироваться из стекла и металлических частей прибора, поэтому он применяется в ловушках для газов, охлаждаемых до температуры жидкого воздуха (—193 С). В вакуумной технике широко применяются и другие газопоглотители, которые вводят в приборы для поглощения остающихся после откачки и выделяющихся во время работы газов. Такие сорбенты (геттеры) сокращают время, необходимое для удаления газов вакуумными насосами, и поддерживают в приборе вакуум, обеспечивающий их нормальную и продолжительную работу. В качестве геттеров используют барий, титан, цирконий, лантан, церий, торий, ниобий, тантал и др. Для разных условий надо выбирать разные поглотители. Например, в области высоких температур ( 800°С) хорошим поглотителем Оа, СО , СО, N3 является цирконий. [c.172]

    Примечание Материал основы для раствора I — титан р-ра 2 — стекло р ра 3 — керамика [c.62]

    Алюмофосфатный клей — Фосфат 1ые Стекло, ситалл, керамика, металлы (никель, молибден, вольфрам, титан, тантал, ковар, констант), работающие при-60 — + 1400°С. [c.381]

    Диффузионное хромирование позволяет получать покрытие, которое может содержать до 30% хрома. Толщина слоя в зависимости от способа получения и вида применяемой стали составляет 60—120 мкм. Для того чтобы предотвратить образование карбида хрома, рекомендуется применять стали с максимальным количеством углерода 0,08 % или сталь, стабилизированную титаном. Диффузионное хромирование находит широкое применение для крепежных деталей благодаря исключительной коррозионной стойкости и легкому демонтажу болтовых соединений. Срок службы таких деталей в 5 раз больше срока службы оцинкованных деталей. Температура диффузионного процесса составляет 1200— 1300° С, и дополнительная термическая обработка целесообразна только для болтов, рассчитанных на высокие нагрузки. Предельная температура применения их составляет 800° С. Кратковременно болты могут работать при температуре до 1100°С (резкие изменения температуры не являются препятствием). Диффузионное хромирование используют также для повышения срока службы измерительного инструмента, форм для прессования стекла, для литья под давлением легких сплавов и т. д. [c.83]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    Свойства. Металлический титан по своему серому ц-вету весьма сходен с железом на воздухе он легко сгорает, образуя белую двуокись титана он также соединяется с азотом, -образуя нитрид. Металл достаточно тверд, чтобы чертить стекло он очень хрупок на холоду, но при красном калении он ковок и может быть вытянут в проволоку. По своим химическим свойствам он сходен с церием, торием, цирконием и гафнием. Чрезвычайно большие количества двуокиси титана применяются для производства белых кра-сок титановые краски отличаются большой кроющей способностью и хорошо противостоят действию воздуха. [c.591]


    Широкие возможности в конструировании рациональных форм малоизнашивающихся электродов (МИЭ) для ряда электрохимических процессов открылись в связи с развитием составных электродов. Б первоначальных конструкциях платиновых электродов для придания им механической прочности и жесткости, а также для подвода (развода) тока в качестве каркаса электрода использовали металлы с хорошей электропроводностью (медь, алюминий, сталь и др.), заш иш енные от коррозии стеклом, кварцем или полимерными материалами. Таким образом, уже самые первые типы конструкций электродов, применявшихся в промышленности, часто решались как составные электроды. Однако, возможности для упрощения конструкции таких электродов, повышения их надежности в работе и снижения их стоимости появились только после того, как стали доступны для использования титан и другие аналогичные металлы. На поверхности таких металлов при анодной поляризации в определенных условиях могут возникать окисные плотные пленки, обладающие высокой химической стойкостью в условиях анодной поляризации, защищающие в дальнейшем основу электрода от разрушения и не препятствующие передаче тока от металла к активному слою электрода. [c.107]

    Порошковый компонент Сталь - сталь Титан - - тнтан Стекло — тнтан [c.122]

    Конструкционный материал химического реактора в миого-продуктовых системах выбирают иа осиоис его коррозионных свойств, реакционных сред д, 1я всех процессов, которые предполагается осуществлять в реакторе. В качестве коиструкцпоп-ных материалов наиболее часто применяют углеродистую сталь нержавеющую сталь Х18Н10Т сталь с эмалевым кислотостойким покрытием сталь, футерованную керамической плиткой титан иногда пластические массы, кислого- и щелочестойкую керамику. В производствах продуктов, в которых лимитируется срдерн апие примесей и требуется высокая чистота продукта (высокочистые вещества, синтетические лекарственные средства), распространены также аппараты пз химически и термически стойкого стекла. [c.22]

    Очень важное значение имеет правильный подбор конструкдионных материалов. Имеется ряд высоколегированных сталей, содержащих хром, марганец, никель, титан, которые хорошо противостоят действию различных агрессивных сред. Ввиду того, что высоколегированные стали дороги, аппаратуру иногда изготовляют двухслойную внутренний слой делают из высоколегированной стали, а наружный — из углеродистой. Широко применяют стойкие к коррозии материалы неорганического происхождения, например, диабазовые плитки, фарфор, стекло, керамику органического происхождения, [c.174]

    Очень чистые металлы получают термическим разложением тетраиодидов ЭЦ при высокой температуре в вакууме. На рис. 217 изображен сосуд из стекла пирекс для получения чистого титана. Через отверстие 1 поступают порошкообразный титан и иод, через отверстие 2 откачивают воздух. В ходе процесса сосуд нагревают до 600°С в электрической печи, а титановая проволока 3 нагревается электрическим током. При 200°С титан и иод взаимодействуют с образованием Т114, который при 377°С сублимируется. [c.499]

    Изготовление формы. Форма определяет конфигурацию, размер, точность и чистоту поверхности выполняемого изделия. Для изготовления форм применяют различные материалы металлы (сталь, медь, алюминий, титан, цирконий, свинец и др.) неметаллы (пластмассы, гипс, воск, пластизоль, пенопласт, кремнийорганические каучуки, стекло, дерево и др.). В зависимости от материала формы подразделяют на металлические, неметаллические и комбинированные. Формы могут быть многократного использования (неразрушаемые) и однократного использования (выплавляемые, растворимые, выжигаемые). [c.340]

    Важными потребителями марганца и его соединений являются также электротехническая, химическая, пищевая про-гмышленности, его применяют при изготовлении стекла и в дру-,тих областях народного хозяйства, в частности для производства безжелезных сплавов с медью, никелем, магнием, титаном и другими металлами. Для производства этих сплавов ферросплавы марганца непригодны, поэтому используют марганец в иде металла или его двойной лигатуры той или иной степени чистоты. [c.394]

    Для рабочих колес и других деталей проточной части насосов в ависи-мости от их назначения применяют различные материалы чугун и углеродистую сталь (нейтральные жидкости), хромистые и хромоникелевые стали (кислая вода), бро зу и цветные сплавы, хромоникслькремнистую сталь, ферроси-лид, титан, пластмассы, керамику, фарфор, графит, покрытия из резины, смолы, эмали и стекла (химически агрессивные и абразивные жидкости). Рабочие колеса насосов, предназначенных для откачки из нефтяных скважин жидкости со значительным (до 1%) содержанием механических примесей, изготовляют из полиамидной смолы. [c.197]

    При разработке схем фирмы используют новые конструкционные материалы титан, таитал, кремнистые стали, стекло, эмаль и др. Применив тантал и стекло, фирма Шотт (ФРГ) создала оригинальную установку получения коицеитрироваииой азотной кислоты с помощью серной кислоты. Колонна концентрирования снабжена танталовыми теплообмеиными элементами. Для концентрирования серной кислоты фирма использует вакуум-испаритель о танталовым кипятильником. Это позволило исключить выбросы серной кислоты в атмосферу [108, 117]. [c.134]

    Описанным методом определяют содержание марганца от тысячных долей процента до целых процентов. При содержаиип МпО 6,5—1,3% погрешность составляет 3,5 —6,0 отн. %, а при содержании МпО 1,3—0,065% —6,0—30 отн.% [ТИ]. Этим методом определено содержание марганца в горных породах и рудах [111, 161, 355, 401, 663, 664], сталях [50, 401, 758, 1235, 1406], воде [1493], воздухе [665], шлаках [25], рении и его препаратах [558], соединениях тория [437], стеклах [1043, 1050], титане [442, 638, 640, 909], а также в лунных породах [775]. [c.56]

    Осаждение проводят в реакторе (диаметр 7 см, длина 30 см), на внутренней стенке которого с помощью перфорированного цилиндра из молибденовой фольги удерживается слой сырого металла. В реактор вставляют нагреватель — пробирку из кварцевого стекла, внутри которой находятся спираль из канталовой проволоки и термопара. Это позволяет точно поддерживать необходимую температуру при осаждении. На кварцевую пробирку надвигают пробирку несколько большего диаметра ( 17 мм) из стекла викор, на которой, собственно, и происходит осаждение металла. Для достижения высокой степени чистоты рекомендуется эту пробирку предварительно обернуть титановой фольгой для того, чтобы титан не осаждался иа стекле. При поддержании температурного градиента 500—>-1100°С получают титан с твердостью по Бринеллю в пределах 80—120. [c.1416]

    Получение Т1Вг4 из простых веществ аналогично описанному выше синтезу Т Вгз. Ампулу, изготовленную из стекла дюран, сгибают посередине под углом 45 . К 4,2 г брома, замороженного жидким воздухом в одном колене ампулы, добавляют в небольшом избытке титан в виде тонких полосок. После откачки, и запаивания ампулы титан переводят путем встряхивания в другое колено ампулы. Ампулу закрепляют за защитным экраном так, что- [c.1441]

    Для получения фаз с меньшим содержанием фосфора рекомендуется несколько изменить условия синтеза и проводить его в аппаратуре из стекла пирекс, схематически показанной иа рис. 415. В средней части трубки укреплена путем припаиваиия пористая керамическая трубка, в которую вставлена лодочка из 2г02. Аппаратуру предварительно промывают очень чистым аргоном. В обработанную, как описано выше, лодочку из 2г02 помещают порошок титана. Нагревание осуществляют при помощи электрической печи I. Красный фосфор находится в ловушке 2. Кран 4 соединяет аппаратуру с вакуумным иасосом. Титан нагревают до 1000°С, ловушку 2 — до 500 °С, одновременно охлаждая ловушку 3 жидким азотом и пропуская над титаном пары фосфора в медленном потоке аргона, поступающем через кран 5 и выходящем через кран 6. Путем изменения направления потока газа, осуществляя одновременно охлаждение и нагревание соответствующих ловушек. пары фосфора многократно пропускают над лодочкой в течение 2— [c.1477]

    Меркурий. Непосредственных данных о составе поверхности материала этой планеты нет. По данным телевизионной съемки, поверхность Меркурия во многом сходна с поверхностью Луны. Обнаружены многочисленные кратеры, поперечник которых от 0,8 до 120 км, а также продолговатые узкие долины и расположенные на далеком расстоянии друг от друга хребты. Меркурий имеет низкое отражение в области видимого света (альбедо 0,056), что указывает на темный материал его поверхности. По данным изучения отражения в широком диапазоне спектра, поверхность Меркурия покрыта луноподобным грунтом, богатым стеклом с повышенным содержанием железа и титайа. Преобладающим минералом, вероятно, может быть пироксен, который под воздействием метеоритных ударов превратился в стекло. В общем тепловой фон Меркурия имеет такой характер, что минералы, богатые титаном и железом, присутствуют в значительной мере в стеклообразном состоянии. [c.125]

    Стекла разлагают смесью НС1 - - НР [1071] или Н2804 - - НР [1030]. Анализируют в ацетилепо-воздушном пламени [492, 1030], если отношение щелочноземельных металлов к алюлшнию или титану 1 20. Если это отношение 1 20, используют пламя па основе закиси азота и ацетилена [492]. Для устранения ипгибиюр- [c.151]

    Навеску —0,2 г двуокиси титана [илн соответствующий объем раствора сульфата титана Т1(804)2] или 0,4—0,5 г сульфата титанила Т10(804) помещают в стакан из жаростойкого стек.ла,. добавляют к ней 2,5 г сульфата аммония, 5,5 мл концентрированной Н2804, накрывают стакан часовым стеклом и нагревают на песчаной бане пли электроплитке до полного раствореиия. После охлаждения содержимое стакана переводят 3 мерную колбу вместимостью 100 мл, осторожно обмывают стен- [c.262]


Смотреть страницы где упоминается термин Титан в стеклах: [c.541]    [c.75]    [c.97]    [c.647]    [c.119]    [c.226]    [c.578]    [c.49]    [c.62]    [c.202]    [c.203]    [c.76]    [c.1433]    [c.1465]    [c.1477]    [c.608]    [c.98]    [c.16]   
Физическая химия силикатов (1962) -- [ c.211 ]




ПОИСК







© 2025 chem21.info Реклама на сайте