Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ДСК-электрод в условиях стационарной анодной поляризации

    ЭЛЕКТРОД КАК СИСТЕМА ПОР В УСЛОВИЯХ СТАЦИОНАРНОЙ АНОДНОЙ ПОЛЯРИЗАЦИИ [c.143]

    Метод кривых заряжения. Сущность метода сводится к анодной поляризации токами малой плотности (Д=10 —10- А/см ) электрода, насыщенного водородом, до установления обратимого водородного потенциала в данном растворе (А. И. Фрумкин, А. И. Шлыгин). Обязательным условием осуществления поляризации является удаление из газовой фазы и раствора электромоторно-активных газов (Нг, Ог и т. п.). Это достигается длительным пропусканием через реакционный объем медленного тока чистого азота или другого инертного газа. Удаление водорода из газовой фазы и раствора переводит систему в стационарное состояние по отношению к газовой фазе, сохраняя ее равновесное состояние по отношению к раствору, что позволяет исследовать сумму процессов на электроде. Сообщая после этого электроду возрастающие количества электричества Q, можно проследить изменение потен- [c.188]


    При необходимости в таких случаях на основании известных реальных анодных кривых и определения для каждого потенциала скоростей саморастворения электрода можно построить кривую истинной анодной поляризации, т. е. зависимости общей скорости коррозии (выраженной через плотность тока) от потенциала. Для этой цели необходимо при изменяющихся потенциалах электрода как в положительном направлении от стационарного значения (при анодной внешней поляризации), так и в от-ржцательном направлении (при катодной внешней поляризации) определить скорость саморастворения электрода. В зависимости от условий скорость коррозии определяют или по скорости выделения водорода, или по скорости поглощения кислорода. Применимо также определение скорости коррозии путем периодического анализа коррозионного раствора или весовых потерь электрода. В тех случаях, когда это возможно, лучше осуществлять замеры скорости коррозии на одном электроде, не прерывая процесса снятия поляризационной кривой. Наиболее легко это удается сделать, например, по определению скорости выделения водорода, если процесс коррозии происходит только за счет водородной деполяризации. В других случаях приходится определять скорость коррозии на отдельных образцах, что, конечно, усложняет получение кривых скорость коррозии — потенциал, по сравнению с получением обычных реальных потенциостатических анодных кривых ток внешней поляризации — потенциал. Однако получение кривых скорость коррозии — потенциал часто совершенно необходимо, так как они дают более исчерпывающую информацию о коррозионном состоянии системы. В качестве иллюстрации приведем несколько примеров построения кривых скорость коррозии — потенциал для анализа некоторых практически важных случаев коррозии пассивирующихся систем. [c.66]

    Ме"+ + пе —> Ме металл зачастую растворяется в ртути, образуя амальгаму. Если вести электролиз раствора ионов иа стационарном (не капающем) ртутном электроде при потенциале, когда восстановление идет на предельном токе, то довольно быстро концентрация металла в ртутном электроде станет значительно выше, чем в окружающем растворе электролита. Линейная анодная поляризация такого электрода по достижении соответствующих потенциалов вызовет появление тока окисления растворившегося в ртути металла. Сила этого тока будет иметь форму пика, поскольку условия его возникновения вполне аналогичны условиям развития тока в вольтамперометрии с линейной разверткой потенциала (см. выше). [c.290]


    Поверхность графита покрыта окислами, количество и состав которых существенно зависят от предыстории образца. Это ведет к плохой воспроизводимости результатов как по величине перенапряжения, так и в отношении формы поляризационной кривой. Хорошо воспроизводимые четкие данные получаются после окисления графита в мягких условиях — при поляризации в слабокислом растворе хлорида, в котором несколько процентов тока идет на образование СОа. При этом исходные поверхностные окислы постепенно удаляются и образуется новая поверхность в некотором стационарном состоянии окисления, которое при дальнейшем электролизе уже практически не меняется. Обработанные таким образом электроды и использовались в наших экспериментах. Опыты проводились в сильнокислых растворах, в которых выделение кислорода сведено на нет, так что анодный ток соответствовал только одному процессу — выделению хлора [295, ср. 296, 297]. [c.166]

    Описанным методом удалось показать, что и а-латуни в условиях анодной поляризации также растворяются псевдосел ективно [141]. Вид 1,1-кривых для сплава u30Zn при повышенных температурах оказывается таким же, как и для -латуни при обычной температуре. После достижения стационарного тока можно наблюдать медь, осевшую равно мерно по всей поверхности рабочего электрода. Эта медь как на -, так и на а-латуни состоит из двух слоев. Верхний слой темно-красного цвета слабо сцеплен с поверхностью и легко отделяется от электрода. Под ним находится светло-розовый слой меди, прочно связанный с поверхностью. [c.128]

    На основании анодных и катодных кривых заряжения получены значения количества электричества, затраченного при анодной поляризации и отданного электродом при разряде (область потенциалов 0,55—1,15 В из расчета на 1 см видимой поверхности). Количество электричества, расходуемого на поляризацию, а также полученного при разряде для непронитанных графитов, в 3—5 раз больше, чем для пропитанных. Возможны два режима с применением протекторов из графитовых материалов. При первом режиме протектор работает в области потенциалов, более отрицательных, чем стационарный. При этом используется энергия его окислительно-восстановительных реакций. Регулятор потенциала включается в пусковой период или тогда, когда возникают условия, при которых мощность протектора недостаточна для сохранения устойчивого пассивного состояния. При втором режиме графитовый протектор работает как аккумулятор в об- [c.128]

    Для пассивации корродирующего металла и поддержания его в пассивном состоянии, помимо анодной поляризации от внешнего источника напряжения, может быть использовано контактирование его с более электроположительным электродом (катодом), который в данном случае называют катодным протектором. Основная роль катодного протектора также состоит в смешении потенциала защищаемого металла (анода) в пассивную область — положительнее потенциала его пассивации в данной среде. Это условие выполнимо в том случае, если стационарный потенциал протектора (или устанавливающийся на нем окислительно-восстановительный потенциал среды) положительнее потенциала пас-ивации металла, если катодная поляризуемость материала протек- [c.153]

    Однако когда в электролите наряду с обычными ионами присутствуют и галоидные ионы, например хлорид-ионы, уже не удается поддерживать металл в пассивном состоянии в таком широком интервале потенциалов. Оказывается, достаточно сдвинуть потенциал нержавеющей стали от потенциала полной пассивации фп,п что, кстати, может произойти в реальных условиях по самым различным причинам (анодная поляризация за счет неодинакового распределения кислорода, попадание окислителя, наличие катодных включений и т. д.), как сталь немедленно активируется (участок ВГ на поляризационной кривой). Это происходит потому, что некоторые поверхностно-активные ионы начинают преимущественно адсорбироваться на поверхности электрода, вытесняя с него кислород, который поддерживает металл в пассивном состоянии. Стационарный потенциал нержавеющих сталей, находящихся в пассивном состоянии фст, лежит ниже потенциала полной пассивации фп.п (между точками Б и В), и склонность нержавеющих сталей к питтинговой коррозии должна определяться разностью между потенциалом активирования и стационарным цотенциалом <ра — Фст- Чем эта разность больше, тем труднее сталь будет подвергаться питтинговой коррозии. Иными словами, при наличии большого участка ИВ на потенциостати- [c.292]

    По описанной выше методике были изучены кривые / — т, полученные на положительно заряженной поверхности стали при потенциале ф = —0,15 в. В этих условиях сила тока характеризует скорость реакции ионизации металла (стационарный потенциал стали в 1 н. НаЗО ф т = —0,25 в). Существует определенное различие в характере влияния ингибиторов на реакции восстановления Н3О+ и ионизации металла. В отличие от реакции восстановления НдО" , скорость анодной реакции при добавлении в кислоту органического ингибитора сначала резко уменьшается, а затем увеличивается, достигая стационарной величины. Это подтверждается ходом кривых для сернокислого бутилпиридиния и неионогенного вещества ОП-20 (кривые 1 я 2 на рис. 6), которые указывают на сильную первоначальную адсорбцию веществ на поверхности стального электрода и последующую их десорбцию. Первоначальное резкое уменьшение и последующее увеличение силы тока особенно сильно выражено при добавлении неионогенных поверхностно-активных веществ (рис. 6, кривая 2) меньшее влияние оказывает сернокислый нонилпиридиний (рис. 6, кривая 3). Указанная разница во влиянии органических веществ на катодный процесс восстановления Н3О+ и анодный процесс ионизации металла объясняется, прежде всего, существенным различием в условиях адсорбции этих веществ на поверхности металла при анодной поляризации в раствор непрерывно переходят ионы металла, в то время как при катодной поляризации происходит разряд НзО . Это и определяет различие в кинетике формирования переходного стационарного слоя на поверхности металла. [c.142]


    Бартелт с сотр. [221, 223, 225] отмечают зависимость плотности тока обмена реакций вида (V.26) от характера поляризации гладкого Pt-электрода, которой он подвергался перед снятием стационарных поляризационных кривых. Плотности тока обмена, определявшиеся после анодной поляризации Pt-электрода (5-10 А-см в течение 20 или 60 с), были меньше плотностей тока обмена, определенных после катодной поляризации [221]. Поскольку плотности тока обмена систем, приведенных в табл. V.1, определялись в щелочных растворах (в [224] использовались растворы с pH = 11,8) при потенциалах, расположенных положительнее водородного участка кривой заряжения на Pt-электроде, то в указанных условиях при предварительной анодной поляризации последний пассивировался адсорбирующимся кислородом. Это и вызывало уменьшение наблюдавшейся после анодной поляризации плотности тока обмена. Приведенные в табл. V.1 константы kg, определялись после предварительной катодной поляризации Pt-электрода. [c.129]

    В значение ф И. Н. Францевич предлагает вцести поправку на анодную поляризацию. Поляризация (потенциал поляризации, це-ренапряжение) определяется как разность между фактическим и равновесным потенциалом, рассчитываемьгм термодинамическим путем. Следует особо подчеркнуть, что при определении величины поляризации необходимо исключить из рассмотрения падение потенциала на о мическом сопротивлении, включающееся в общую измеряемую величину потенциала поляризованного электрода. В случае электрохимической защиты нас интересует разность потенциалов равновесного (защитного) и стационарного, т. е. величина анодной поляризации, равная необходимому для полной защиты смещению потенциала. В рассматриваемых условиях, поддерживая потенциал равным ф , разность между фактическим и защитным составляет всего [c.67]

    Здесь V], У2, Уз, У4, У5 — стационарные электродные потенциалы отдельных составляющих системы в условиях коррозии (соответственно для электродов 1, 2, 3, 4, 5) в отсутствие протекания тока. Кривые анодной поляризации Ах—У А ) изображены сплошными линиями, кривые катодной поляризации [У К —УъКъ) — пунктирными. [c.217]

    В электролитической ванне (электролизере, электролитической ячейке) под влиянием приложенного внешнего электрического поля и в замкиутом гальваническом элементе нарушается равновесие, изменяются электрические характеристики системы. Катод (анод) и раствор электролита обмениваются заряженными частицами. Частные токи, отвечающие анодному и катодному процессам, не равны току обмена — количеству электричества, проходящему в е(Диницу времени в условиях равновесия от раствора к электроду и обратно. Состав системы количественно и во многих случаях качественно изменяется. Плотность заряда двойного электрического слоя и потенциалы электродов не равны равновесным значениям и зависят не только от активности веществ, участвующих в электрохимическом процессе, температуры и давления, 1Но и от силы тока. Напряжение на электролизере лри данном токе больше, чем равновесная э. д. с. гальвап ического элемента, в котором осуществляется обратная электрохимическая реакция. В замкнутом, генерирующем ток гальваническом элементе (аккумуляторе) напряжение на клеммах меньше, чем равновесная э. д. с. Если система под током достигает стационарного состояния, не зависящего от времени, то неравновесные потенциалы устанавливаются и принимают стационарные значения. Оцениваются эти поляризационные явлеиня поляризацией электродов и э. д. с. поляризации. [c.200]

    Из соотношения (229) видно, что изменение стационарного потенциала вследствие деформации электрода не является одно- значной функцией термодинамического состояния металла (обу- словливающего анодное поведение) из-за участия катодного процесса. Поэтому выявление взаимосвязи напряженного состояния металла и его электрохимических свойств должно проводиться только в условиях внешней поляризации до значений потенциала, обеспечивающих преимущественное протекание реакции анодного растворения (т. е. в области тафелевского участка анодной поляризационной кривой). Измеренные таким способом значения потенциала при гальваностатической поляризации или плотности тока при потенциостатической поляризации могут использоваться для [c.166]

    В последнее время широкое распространение получил новый метод полярографического анализа, основанный на предварительном электролитическом концентрировании металлов на стационарных электродах и последуюш,ем анодном растворении их при постепенно снижаюш,емся отрицательном потенциале [1—4]. Брос-ковый ток на стационарном электроде, полученный в определенных условиях, правильно отражает явление концентрационной поляризации и может быть использован для построения полярографических 1—Е кривых [5—6]. Необходимым условием воспроизводимости бросковых токов является полная гальваническая деполяризация электрода после каждого измерения, осуш,ест-вляемая коротким замыканием электродов. При коротком замыкании электродов после предварительного электролиза наблюдается обратный бросок тока, являюш,ийся следствием разрядки гальванического элемента. До последнего времени обратный брос-ковый ток не привлекал достаточного внимания исследователей, и поэтому в настояш ей работе нами была предпринята попытка изучить это явление и выяснить возможности применения его в полярографии. [c.179]

    Характеристика промышленных катодов, применяемых при анодной защите химического оборудования, приведены в табл. 5.1. Там же указаны промышленные среды, в которых катоды преимущественно используют. Конструктивное оформление катодов и катодных узлов, а также способы их крепления на аппаратах показаны на рис. 5.4—5.6. Материал катода должен обладать высо кой коррозионной стойкостью в промышленных агрессивных средах не только при стационарном потенциале, но и в условиях анодной защиты оборудования, т. е. при катодной поляризации. Платиновые электроды, коррозионноустойчивые во многих агрессивных средах, из-за высокой стоимости применяют при анодной защите аппаратов небольших размеров. Обычно из платины в целях экономии изготовляют не весь катод, а лишь наружный слой, а основная масса электрода может быть выполнена из других металлов (серебра, меди, бронзы, латуни, свинца, титана [21). На рис. 5.4 представлен катод из латуни, покрытой платиной. Широкое распространение получили катоды из самопассивирующихся металлов. Так, в серной кислоте применяют ка- [c.258]


Смотреть страницы где упоминается термин ДСК-электрод в условиях стационарной анодной поляризации: [c.473]    [c.475]    [c.532]    [c.92]    [c.95]   
Смотреть главы в:

Высокоактивный водородный диффузионный электрод -> ДСК-электрод в условиях стационарной анодной поляризации




ПОИСК





Смотрите так же термины и статьи:

Поляризация электродов

Поляризация электродов анодная

Стационарная анодная поляризация ДСК-электрода

Ток анодный

Электрод как система пор в условиях стационарной анодной поляризации



© 2025 chem21.info Реклама на сайте