Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Степень превращения для реакторов

    Так как система в реакторе периодического действия характеризуется средним значением движуш ей силы, очевидно, что для достижения той же степени превращения реакторы непрерывного действия с мешалками должны иметь существенно больший объем, чем реактор периодического действия. Однако реакторы непрерывного действия с мешалками имеют ряд преимуществ, которые компенсируют этот недостаток. Управление ими проще и они требуют меньших затрат труда при обслуживании. [c.96]


    В разд. 9.4.2 было показано, что при управлении реактором для превращения SO2 может быть выбрана такая оптимальная температура, при которой общая скорость реакции будет максимальной. Но это будет соответствовать только достижению максимальной скорости для данной частной степени превращения. Реактор может быть большим и может содержать большое количество катализатора, обеспечивающее высокую степень превращения, или же он может содержать малое количество катализатора, что приведет соответственно к меньшей степени превращения. Для данной реакционной смеси должна существовать оптимальная температура, обеспечивающая максимальную скорость для каждой реакции. Поэтому для обратимых реакций, проходящих в неизотермических условиях, можно выбрать температурную кривую такого профиля, что скорость будет максимальной при каждой из возможных степеней превращения. При экзотермических реакциях влияние повышения температуры выра кается не только в уменьшении степени превращения, но также и в увеличении скорости реакции. Следовательно, должна существовать также оптимальная температура для управления реактором в изотермических условиях. [c.437]

    Режим движения жидкости в реакционной зоне реактора непрерывного действия близок к полному смешению. Для повышения скорости процесса и увеличения степени превращения реакторы устанавливают в виде каскада (рис. 6.30). [c.123]

    При работе с газообразными парафиновыми углеводородами очень важно знать пределы их взрываемости, чтобы проводить окисление в условиях, лежащих вне этих пределов (табл. 115). Для этого необходимо применять большой избыток воздуха или углеводорода. Поскольку концентрации желаемых продуктов окисления в конечном газе будут в первом случае невелики, их выделение потребует больших затрат во втором случае вследствие малых степеней превращения углеводорода за один проход через реактор необходимо осуществлять рециркуляцию газов. Выходы, как правило, невелики, так как образуются значительные количества окиси и двуокиси углерода. [c.433]

    Если поставить вопрос, при какой температуре степень превращения в одиночном реакторе с фиксированным временем контакта будет максимальной, то сразу напрашивается ответ, что этой температурой должна быть Т ), т. е. температура, прп которой скорость реакции максимальна. Это действительно так, поскольку [c.188]

    Упражнение 11.20. Непрерывный процесс омыления проводится в двух последовательно соединенных реакторах идеального смешения. Реакция идет по второму порядку. Эфир и щелочь подаются в виде раствора с одинаковой постоянной молярной концентрацией, и общий объем системы сохраняется постоянным. Найдите, при каком отношении объемов реакторов выход продукта на единицу объема системы будет наибольшим, если суммарная степень превращения близка к 100%. [c.189]


    В окончательную формулу для Сд/Сц величины Xi и 2 входят уже не симметрично, так что модели ВС и СВ приводят к неодинаковой степени превращения в реакторе. [c.204]

    Если один такой реактор дает степень превращения в некоторой реакцип первого порядка, равную 60%, то сколько реакторов надо последовательно соединить, чтобы получить степень превращения 99%  [c.207]

    Упражнение IX.7. Покажите, что при постоянном р последовательность N реакторов идеального смешения с временем контакта pL/GN в пределе —> оо дает ту же степень превращения, что и трубчатый реактор. [c.265]

    Сформулируем следующую задачу. Дан реактор длиной Ь с составом исходной смеси g Q и массовой скоростью потока О. Требуется выбрать такую функцию Т (г) (О й 2 чтобы конечная степень превращения была максимальной. В этом (и только в этом) разделе мы направим продольную координату в противоположную сторону (рис. IX.4), что согласуется с обратной нумерацией реакторов идеального смешения в главе VII. Пусть [c.266]

    Можно ожидать, что заданная степень превращения будет достигнута в реакторе меньшей длины, если разделить реактор на две секции, в которых поддерживается различная температура. В этом случае задача оптимизации состоит в выборе двух температур и двух длин секций, обеспечивающем наибольшую степень превращения. При другой постановке задачи начальная и конечная степени полноты реакцип заданы и требуется выбрать промежуточную степень полноты реакции и две температуры так, чтобы общая длпна реактора была минимальной. Если l и Ц — начальная и конечная степени полноты реакции в каждой секции, то можно найти оптимальную температуру I"), при которой Ь минимально, причем [c.269]

    Чтобы опорожнить и вновь наполнить реактор, требуется 20 мин. При какой степени превращения (выраженной, как и раньше, в процентах от равновесной) производительность процесса будет наибольшей Какие дополнительные данные необходимы, чтобы рассчитать влияние повышения температуры на про- [c.311]

    Корень полученного уравнения являемся степенью превращения в реакторах. Поиск корня а интервале 0...1 можно осуществить на ЭБМ методом итерации, используя формулу Ньютона. [c.51]

    Для наглядности равенства (11.35) и (11.37), связывающие X и у при = 1, а также значение величины селективности V изображены в виде кривых на треугольной диаграмме (рис. 12). Из анализа кривых следует, что с увеличением степени превращения X скорость побочной реакции увеличивается, при этом селективность уменьшается в обоих типах реакторов, всегда оставаясь меньшей в реакторе полного перемешивания. Например, при степени превращения X = 0,6 селективность процесса в реакторе полного вытеснения составляет 0,61, а в реакторе полного смешения — только 0,4. Снижение селективности наблюдается и при переходе от реактора периодического действия к реактору непрерывного действия, что весьма существенно при моделировании и объясняется различным уровнем концентрации целевого продукта в начальный и конечный моменты времени пребывания в аппарате. [c.34]

    Полученные соотношения (11.41) и (11.42) представлены в виде кривых на треугольной диаграмме (рис. 13). Профиль кривых 1 ж 2 показывает, что в отличие от предыдущего процесса с последовательными реакциями здесь при параллельных реакциях более целесообразно применять реактор с перемешиванием, поскольку кривая, соответствующая ему, расположена ниже кривой реактора полного вытеснения. Например, при степени превращения х = 0,75 в реакторе полного вытеснения селективность составляет [c.36]

    В целом при выборе типа реактора следует исходить из конкретного механизма изучаемого процесса и, прежде всего, из типа реакций, их порядка, задаваемой степени превращения и т. д., учитывая при этом особенности реакторов полного вытеснения и полного смешения [93, 146]..  [c.37]

    В частности, при А = В = = 0 = О ш константах к, = 0,025 к, = 0,2 к = 0,4 было получено, что в комбинированном реакторе при среднем времени пребывания Тс = 7,5 мин в зоне смешения и т = 5,7 мин в зоне вытеснения степень превращения А в С достигает 49%. Любой другой реактор или комбинация реакторов дают меньшую степень превращения. Так в двух последовательно соединенных реакторах смешения с временем пребывания Тс = 7,5 мин в каждом, величина степени превращения получается равной 45% в реакторе вытеснения при Хв == 8,75 мин она достигает 42%. [c.107]

    Высоту слоя катализатора, необходимую для достижения заданной степени превращения гидрируемого вещества на каждой ступени, находим из расчета скорости процесса по длине реактора. [c.110]

    Согласно этой схеме включений, нормальный бутан поступает в каталитический конвертор (реактор) 2 и там изомеризуется при определенной степени превращения. Продукты реакции поступают в дистилляционную колонну 2, где разделяются на верхний продукт, состоящий из изобутана требуемой чистоты, и нижний — нормальный бутан, который изомеризуется в каталитическом конверторе [c.282]

    Изомеризация нормального бутана может быть осуществлена также по схеме, представленной на рис. 13-23. Нормальный бутан поступает в смеситель 1, где смешивается с нижним продуктом из дистилляционной колонны 3, и направляется в изомеризационный реактор 2, где изомеризуется при определенной степени превращения. Продукты реакции поступают в дистилляционную колонну, где разделяются на готовую продукцию (верхний продукт) и возврат (нижний продукт). [c.282]


    И за пределами реактора. При очень малых степенях превращения возникает аналитическая проблема выделения и измерения малых количеств продуктов в присутствии больших количеств реагентов. [c.63]

    При значениях Ре 2, Re> 2 и достаточно большом отношении < р/ к проскок реакционной смеси вдоль стенок реактора достаточно мал. По данным 30], при Re > 2 вполне приемлемое значение следует считать примерно равным 10. Если эти условия не выполняются, число Пекле невелико. При невысоких степенях превращения вполне приемлемым может оказаться значение d , меньше 10. [c.91]

    В противном случае степень превращения Хд просто недостижима из-за разогрева реагирующей смеси в ироцессе реакции до равновесной температуры Т . Если же входная температура смеси выбирается с учетом условия (111, 197), то для достижения нужной степени превращения в реакторе х значение может оказаться таким низким, что реакция вообще не пойдет при данной температуре либо потребуется чрезмерное увеличение размеров аппарата вследствие малой скорости реакции в его начале. [c.123]

    Задачу оптимизации для такого реактора можно сформулировать различно, в зависимости от того, какая цель при этом преследуется. Например, для заданного общего времени пребывания т и заданного числа ступеней N необходимо найти входные температуры ступеней Tf > (г = 1,. . N) и время пребывания реагентов на каждой ступени т,- (i 1,. .., N) так, чтобы общая степень превращения в реакторе была максимальной. Иная постановка оптимальной задачи заключается в требовании достижения заданной степени превращения ху, при минимальном общем времени пребывания реагентов в аппарате и заданном числе ступеней. [c.124]

    Вместе с тем, при построении зависимости затрат на катализатор от числа ступеней реактора, рассчитываемого, например, на заданную степень превращения, необходимо для каждого значения числа ступеней минимизировать требуемое количество катализатора соответствующим выбором входных температур ступеней и [c.124]

    Упражнение 11.18. Предполагается провести реакцию 2А Р Q в одном или нескольких реакторах идеального смешения при постоянной объемной скорости потока 3,6 м 1ч. Исходная концентрация вещества А равна 40 кмоль1м , веществ Р и Q нулю константа скорости прямой реакции 0,9 м 1 кмоль-ч), а константа равновесия 16. Каков должен быть размер сосуда, чтобы конечные концентрации веществ Р ш Q составляли 85% от равновесных Если можно использовать сосуды емкостью 5% от емкости одиночного реактора, то сколько нужно малых сосудов, чтобы получить ту же степень превращения в последовательности реакторов  [c.189]

    Существует два основных метода охлаждения реагирующей смеси между стадиями адиабатического процесса. С конструктивной точки зрения проще всего смешивать реагенты с байпасной частью исходной смеси. Не обязательно использовать холодное сырье можно вводить в реактор холодное инертное вещество, разбавитель нли смесь какого-либо иного состава. Например, в процессе окисления двуокиси серы используется подача холодного воздуха. В любом случае недостатком такого метода является то, что реагирующая смесь, в которой уже достигнута некоторая степень превращения, разбавляется пепрореагировавшим веществом. Альтернативным методом является охлаждение в промежуточном теплообменнике, где состав реагирующей смеси совсем или почти не меняется. Для каталитических реакций скорость процесса в отсутствие катализатора пренебрежимо мала поэтому, скажем, из реактора с неподвижным слоем газовый поток можно направлять во внешний теплообменник, а затем возвращать в следующий адиабатический слой без заметного изменения степени полноты реакции. В гомогенно-каталитическом процессе реакция может происходить и в теплообменнике, тогда теплообменник можно рассматривать как неадиабатический трубчатый реактор. [c.216]

    Расходы на предварительный подогрев пропорцпопальны так как через предварительный теплообменник проходит только доля всего потока, а прирост температуры в теплообменнике пропорционален т . Стоимость слоя катализатора принимается пропорциональной его массе. Как и в разделе VIII.1, степень превращения в реакторе пропорциональна величине [c.244]

    Упражнение IX.30. Покажите, что функция распределения времени пребывания в трубчатом реакторе при ламинарном режиме течения имеет вид 2z /0 (где 0р — время нрохождения любого элемента потока и — минимальное время нрохождения). Диффузией, входным и концевым эффектами можно ирепебречь. Покажите отсюда, что степень превращения в реакции второго порядка с константой скорости к равна 2i 1 In [В/(В 4- 1)] . Здесь В = = akt па — исходная концентрация обоих реагентов. [c.290]

    Размер реактора таков, что предположение об идеальном вытеснении в реакторе приводит к степени превращения 86,5%. Если на самом деле ноток ламина-рен, то найдпте  [c.290]

    Известно, что если уменьшить время реакции вдвое, то степень превращения составит 73%. Для увеличения выпуска продукции было предложено уменьшить время реакцип до 65% первоначальной величины. Время, необходимое для опорожнения, чпстки и наполнения реактора остается неизменным и равно прежнему времени реакции. Покажите, что при этом производительность увеличится примерно на 9%. Является ли такое решение наилучшим  [c.311]

    При периодическом ведении процесса реагенты загружаются в реактор единовременно и находятся в нем до тех пор, пока будет достигнута заданная степень превращения. В процессе реакции реагенты перемешиваются мешалкой, нагреваются или охлаждаются, после чего продукты выгружаются,и реактор готовится к следпощей операции. [c.59]

    С/ — величина, пропорциональная степени превращения в /-м реакторе смешения, молъ1м  [c.355]

    Отмечено также, что чем ниже давление, тем вьпие должна быть начальная температура для достижения одинаковой степени превращения. Например, если при 16 МИа начальная температура 360 С, то при 7 МПа требуется 375 °С. Это, в свою очередь, усугубляет повышенное коксообразование, что ведет к увеличению дезактивации катализатора. Проблема снижения рабочего давления в реакторах процессов каталитического гидрооблагораживання является предметом многочисленных исследований и поисков. Несмотря на множество патентов на процессы с пониженным давлением, в литературе до сих пор пока нет публикаций, свидетельствующих об их практической реализации. Для рассматриваемых процессов, реакции которых протекают с очень большими диффузионными осложнениями, влияние давления практически равнозначно проблеме создания эффективного катализатора, стойкого к дезактива--ции отложениями углерода и металлов и обладающего повышенной селективностью в основньгх реакциях гидрогенолиза гетероатомных соединений. [c.67]

    Следует, вероятно, признать, что этот, а принципе более прогрессивный вид технологии, пока не получил широкого практического развития. Основы технологии были разработаны на установке производительностью 954 м /сут в Лейк-Чарльзе (Луизиана). На НПЗ в Шуаиба (Кувейт) бьшо испытано два варианта конструкции реактора, мощность установки после реконструкции составила 8580 м /сут со степенью превращения 55%. Третья установка производительностью 2940 м /сут действует на НПЗ Саламанка, Мексика. [c.169]

    Гаким образом, поставив эксперимент по оп[)еделению равновесной температуры смеси данного состава, что относительно просто, [lo KOjLbKy при этом не требуется иодвода реагентов в зону реакции и отвода их из нее, далее ио формуле (111,146) уже можно рассчитать оптимальное значение температуры реакции, при котором смесь этого состава будет реагировать с максимальной скоростью. Если известна зависимость равновесной температуры Tg от степени превращения, то с помощью формулы (111,146) можно построить и зависимость оптимальной температуры Т т. от степени иревращения (рис. 111-15), которая может быть исиользована для расчета оптимального температурного профиля в реакторе идеального вытеснения (рис. 111-14). [c.116]

    Чтобы избежать этого, применяют ступенчатый адиабатический реактор с промежуточным охлаждением реагирующей смеси между ступенями схематическое изображение аппарата показано на рис. 111-16. На рис. 111-17 приведен также характер изменения температуры реагирующей смеси в таком реакторе. Наличие промежуточного теплообмена между секциями позволяет увеличить температуру реакции на первых ступенях, что обеспечивает высокую скорость реакции при малых степенях превращения и, тем самым, дает возможность существенно уменьшить общий объем реактора, необхо-ДИМ111Й для достижения заданной конечной степени превращения, по сравпеишо с одноступенчатым реактором. Особенно важно. уто для контактно-каталитических процессов, у которых затрат л на катали-зато]з прямо пропорциональны требуемому времени п]1е6ывания реагентов в аппарате для его заданной производительности. [c.123]

    Однако для такого реактора весьма существенными могут оказаться дополнительные затраты на организацию ступеней, которые в первом приближении можно принять пропорциональными их числу. Если в координатах затраты 3 — число ступеней N построить зависимость затрат на катализатор (рис. П1-18, кривая /), то указанная зависимость будет иметь монотонно убывающий характер. Это объясняется тем, что при неограниченном увеличении числа ступеней в аппарате, рассчитываемом, например, на заданную степень превращения, температурный профиль приближается к оптимальному и обеспечивается более эффективное использование катализатора. С другой стороны, с увеличением числа ступеней возрастают расходы на аппаратурное оформление промежуточного теплоотвода (рис. П1-18, кривая 2). Суммарные затраты в этом случае имеют выраженный минимум (рис. HI-18, кривая 3), положение которого и отвечает оптимальному числу ступеней реактора iVonr.- [c.124]


Смотреть страницы где упоминается термин Степень превращения для реакторов: [c.92]    [c.203]    [c.215]    [c.228]    [c.266]    [c.181]    [c.338]    [c.349]    [c.355]    [c.355]    [c.90]    [c.122]    [c.123]   
Методы кибернетики в химии и химической технологии (1971) -- [ c.0 ]

Методы кибернетики в химии и химической технологии (1971) -- [ c.0 ]

Методы кибернетики в химии и химической технологии 1968 (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Реакторы превращения

Степень превращения

Степень превращения и степень превращения



© 2025 chem21.info Реклама на сайте