Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакторы превращения

    В реакторе объемом 1 смешаны 0,1 кмоль азота и 0,1 кмоль кислорода. При некоторой температуре в сосуде образовалось 2-10 кмоль оксида азота (II). Какое количество оксида азота образуется при тех же условиях, если в реактор ввести вдвое большее количество азота и кислорода в п раз азота Можно ли, увеличив количество азота и кислорода, добиться при указанных условиях их полного превращения в оксид азота (II)  [c.104]


    Превращение хлорированного парафина в присутствии алюминия можно осуществлять и непрерывным способом. Для этого исходное сырье пропускают через обогреваемый реактор колонного типа, запол- [c.241]

    При работе с газообразными парафиновыми углеводородами очень важно знать пределы их взрываемости, чтобы проводить окисление в условиях, лежащих вне этих пределов (табл. 115). Для этого необходимо применять большой избыток воздуха или углеводорода. Поскольку концентрации желаемых продуктов окисления в конечном газе будут в первом случае невелики, их выделение потребует больших затрат во втором случае вследствие малых степеней превращения углеводорода за один проход через реактор необходимо осуществлять рециркуляцию газов. Выходы, как правило, невелики, так как образуются значительные количества окиси и двуокиси углерода. [c.433]

    Еслн в процессе теплообмена протекают химические реакции, сопровождаемые тепловым эффектом, то в тепловом балансе необходимо учесть теплоту, выделяющуюся при физическом и химическом превращении. Расчетные формулы и примеры определения тепловых нагрузок реакторов жидкофазных ироцессов приведены [c.122]

    Величина, которая должна быть оптимизирована, обычно является функцией состава реакционной смеси, выходящей из последнего кубового реактора (превращение, выход) и общего среднего времени пребывания в каскаде т (производительность), т. е. [c.224]

    Процесс окисления этилена идет по цепному механизму и поэтому должен зависеть от величины поверхности реактора и от природы этой поверхности. Существование обеих зависимостей подтверждается опытным путем. В реакторе, заполненном осколками стекла, окисление этилена протекает зо много раз медленнее, чем в полом сосуде. В заполненном стеклом реакторе превращение этилена, равное 70%, достигается при 500 °С, в то время как в полом сосуде эти результаты могут быть получены уже при 390 °С. Основными продуктами реакции в сосуде с насадкой являются окись углерода и вода, а в полом реакторе образуется смесь окиси этилена, формальдегида и муравьиной кислоты. [c.194]

    Упражнение 11.19. Процесс получения вещества X из веществ А и В с помощью реакции А + В X проводится в двух последовательно соединенных реакторах идеального смешения. Реакция идет по второму порядку и оба реагента подаются в эквимолярных количествах. Если необходимо достичь 90%-го превращения, найдите отношение объемов реакторов, при котором суммарный объем будет минимальным. [c.189]


    Поэтому процесс проводят следующим образом. Смолу швелевания контактируют с катализатором при различных ступенчато повышаемых температурах. В первом реакторе поддерживают температуру в пределах примерно 280—340°. При этих температурах катализатор уже обладает высокой восстановительной активностью в отношении кислородных и сернистых соединений, но расщепляющая его активность еще незначительна, благодаря чему предотвращается образование отложений на катализаторе. После того как произойдет превращение метастабильных веществ в углеводороды при указанных мягких условиях, можно постепенно повышать температуру, благодаря чему усиливается гидрирующая активность катализатора. Для этого служат вторая реакционная колонна, в которой поддерживают температуру 340—360°, и третья с рабочей температурой 360—375°. [c.50]

    Упражнение 11.20. Непрерывный процесс омыления проводится в двух последовательно соединенных реакторах идеального смешения. Реакция идет по второму порядку. Эфир и щелочь подаются в виде раствора с одинаковой постоянной молярной концентрацией, и общий объем системы сохраняется постоянным. Найдите, при каком отношении объемов реакторов выход продукта на единицу объема системы будет наибольшим, если суммарная степень превращения близка к 100%. [c.189]

    Газовая смесь проходит над катализатором один раз и не подвергшаяся превращению часть смеси выпускается из реактора, т. е. теряется для процесса. [c.73]

    Так, налример, дальнейшее превращение хлористого водорода, образующегося при хлорировании метана, достигается впрыском метанола в продукты, выходящие из реактора хлорирования [111]. При этом метанол превращается в хлористый метилен. [c.192]

    Зная кинетическую зависимость г ( , Т), можно сразу же найти скорость образования или превращения данного вещества в определенной точке реактора. Так, если г ( , Г) — скорость реакции = о, выраженная в молях на единицу объема в единицу [c.120]

    Если поставить вопрос, при какой температуре степень превращения в одиночном реакторе с фиксированным временем контакта будет максимальной, то сразу напрашивается ответ, что этой температурой должна быть Т ), т. е. температура, прп которой скорость реакции максимальна. Это действительно так, поскольку [c.188]

    Можно ожидать, что заданная степень превращения будет достигнута в реакторе меньшей длины, если разделить реактор на две секции, в которых поддерживается различная температура. В этом случае задача оптимизации состоит в выборе двух температур и двух длин секций, обеспечивающем наибольшую степень превращения. При другой постановке задачи начальная и конечная степени полноты реакцип заданы и требуется выбрать промежуточную степень полноты реакции и две температуры так, чтобы общая длпна реактора была минимальной. Если l и Ц — начальная и конечная степени полноты реакции в каждой секции, то можно найти оптимальную температуру I"), при которой Ь минимально, причем [c.269]

    Упражнение IX.9. Вычислите время контакта, необходимое для достпже-ГП1Я в трубчатом реакторе 35%-го превращения ацетальдегида при температуре 520 С и давлении 1 атм. Уравнение реакции СН3СНО —> СН4 + СО. Реакция идет по второму порядку с константой скорости 0,43 лЦмоль-сек) при 520° С и может считаться необратимой. [c.265]

    Упражнение 11.18. Предполагается провести реакцию 2А Р Q в одном или нескольких реакторах идеального смешения при постоянной объемной скорости потока 3,6 м 1ч. Исходная концентрация вещества А равна 40 кмоль1м , веществ Р и Q нулю константа скорости прямой реакции 0,9 м 1 кмоль-ч), а константа равновесия 16. Каков должен быть размер сосуда, чтобы конечные концентрации веществ Р ш Q составляли 85% от равновесных Если можно использовать сосуды емкостью 5% от емкости одиночного реактора, то сколько нужно малых сосудов, чтобы получить ту же степень превращения в последовательности реакторов  [c.189]

    Прежде всего ясно, что не все молекулы, входящие в реактор с временем контакта 0 = Vlq, проведут в нем одинаковое время 0. Вследствие интенсивного перемешивания некоторые из них пройдут реактор почти мгновенно. Именно нз-за того, что такие молекулы вносят очень малый вклад в химическое превращение, объем реактора идеального смешения приходится делать большим. Чтобы найти функцию распределения времени пребывания в реакторе, можно поставить следующий эксперимепт. В момент i = О в реактор впрыскивается короткий импульс нейтрального трассирующего вещества и измеряется концентрация этого вещества в выходящем из реактора потоке. Если концентрация в момент t равна с (г), то количество молекул, выходящих пз реактора в течение малого промежутка времени от i до i - - dt, будет пропорциональное (i) dt. Общее число молекул, вышедших из реактора, пропорционально [c.198]


    В окончательную формулу для Сд/Сц величины Xi и 2 входят уже не симметрично, так что модели ВС и СВ приводят к неодинаковой степени превращения в реакторе. [c.204]

    Если один такой реактор дает степень превращения в некоторой реакцип первого порядка, равную 60%, то сколько реакторов надо последовательно соединить, чтобы получить степень превращения 99%  [c.207]

    Если 20 кг фосфина при атмосферном давлении п 945° К подаются в адиабатический реактор за 1 ч, определите размер реактора, необходимый для достижения 30%-го превращения в фосфор, в следующих случаях  [c.230]

    Мы рассмотрим только задачу расчета двух- и трехстадийного реактора с подогревом перед первым адиабатическим слоем.Полная массовая скорость потока равна 7731 кг/ч такое количество исходной смеси заданного состава дало бы нри полном превращении 50 т 100%-п серной кислоты в день. Принятая система обозначений показана на рис. 111.16. Масса катализатора в п-м слое равна [c.243]

    Упражнение IX.7. Покажите, что при постоянном р последовательность N реакторов идеального смешения с временем контакта pL/GN в пределе —> оо дает ту же степень превращения, что и трубчатый реактор. [c.265]

    Сформулируем следующую задачу. Дан реактор длиной Ь с составом исходной смеси g Q и массовой скоростью потока О. Требуется выбрать такую функцию Т (г) (О й 2 чтобы конечная степень превращения была максимальной. В этом (и только в этом) разделе мы направим продольную координату в противоположную сторону (рис. IX.4), что согласуется с обратной нумерацией реакторов идеального смешения в главе VII. Пусть [c.266]

    Аппаратурно-технологическое оформление конверсии метана. Как было уже отмечено ранее, протеканию процесса способствует высокая температура. Катализатор в этих условиях весьма активен, и равновесие достигается быстро, поэтому достигаемое в реакторе превращение можно с достаточной точностью определить из равновесных данных. Конверсия метана - реакция эндотермическая тепловой эффект взаимодействия метана с водой по уравнению (6.9) = —206,4 кДж/моль и превалирует над экзотермическим эффектом другого этапа [уравнение (6.10)] 02 = +41,0 кДж/моль. Необходимую теплоту можно подвести через стенки обогреваемых труб, в которых находится катализатор и протекает реакция, т.е. осуществить процесс в трубчатом реакторе, или, как его называют, в трубчатой печи. Обогрев осуществляется сжиганием природного газа в факельных инжекционных горелках. Дымовые газы с температурой 1200-1300 К отводятся из нижней части реактора. Температура, необходимая для полного превращения метана (1300 К), органичена термостойкостью металла, из которого сделаны трубки, поэтому допускаемый нагрев не превышает значений температуры 1180—1200 К. Максимальная температура на выходе из слоя будет, естественно, ниже 1080-1100 К и превращение метана не превысит 75% (см. табл. 6.3). [c.402]

    Реакция полимеризации этилена, содержащего до 0,008% кислорода, осуществляется при непрерывной подаче газа под давлением 1500 ат. Полимер вместе с непрореагировавшим этиленом через редукционный вентиль перепускается в газо-отделитель И, а из последнего — в шнековый приемник 12, где давление снижается до 5 ат. Из шнекового приемника полиэтилен выдавливается в виде жгута и поступает на охлаждение и грануляцию в ванну 13. Непрореагировавший этилен из газо-отделптеля и шнекового приемника отводится через фильтр-ловушку 14, циклон 15 и фильтр 16 на очистку в скруббер 17. За один проход этилена через реактор превращение составляет 12—15%, а суммарное использование этилена достигает 95—98%. [c.27]

    Графнки рис. 139 показывают, что секционировать аппарат целесообразно при глубине превращения не ниже 60—70%, так как при более низких глубинах превращения эффект от секционирования не оправдывает усложнения конструкции реактора. Число секций, как правило, целесообразно увеличивать только до 5—6, так как дальнейшее увеличение числа секций дает незначительный эффект. [c.276]

    В промышленных условиях для полного превращения 1 кг бутана требуется примерно 550 ккал. Подведение такого большого количества тепла представляет технически трудную проблему. Для решения ее имеется в принципе три возможности. Во-первых, расположение катализатора в трубках, обогреваемых снаружи газом (иОР-процесс) [15]. Во-вторых, тепло, необходимое для дегидрирования, предварительно накапливается в реакторе таким образом, что совместно с катализатором в зону дегидрирования вводится некатализирующий материал, обладающий высокой теплоемкостью. Так как катализатор для освобождения от коксовых частиц, делающих его неактивным, время от времени подвергается регенерации путем выжигания в струе воздуха, и при этом освобождается большое количество тепла, то в дальнейшем тепло, приносимое катализатором в реактор, используется для осуществления реакции дегидрирования. Но количество тепла, накопленное при этом в катализаторе, вернее в теплоносителе, ограничено, поэтому необходимо, чтобы процесс регенерации проходил за возможно короткое время (7—15 мин.). В случае необходимости можно также в период регенерации подводить к катализатору еще искусственное тепло (процесс Гудри [16]). [c.47]

    В случае синтеза среднего давления катализатор находится в трубках ( 2000 на 1 реактор), окруженных водой, температура которой также определяется давлением. В обоих случаях для отвода тепла используется вода. Передача тепла от катализатора к охлаждающим поверхностям обеспечивается в основном синтез-газом, так как катализатор, содержащий большой процент кизельгура, обладает очень низкой теплопроводностью. Чем меньше диаметр трубок, в которых находится катализатор, тем меньше местных перегревов катализатора и тем ниже метарюобразование. Возможная удельная нагрузка катализатора, выраженная в нм газа. на 1 объема катализатора в час, сравнительно невелика в связи с необходимостью соответствующего теплоотвода. Соответственно невелика и мощность реакторов. Реактор емкостью примерно 10 катализатора может пропустить 1000 м час синтез-газа, что при выходе 165—170 г. полезных продуктов синтеза на 1 нм шревра-щенного газа соответствует примерно 120 кг час продуктов синтезе (Сз и выше). Охлаждающая поверхность на 1000 превращенного газа составляет около 3000 м , а расход металла на 1000 м час превращенного паза составляет 65 т. [c.68]

    На пути синтез-газа через катализатор уже в первой половине слоя достигается значительная глубина его преврап1ения. Для обеспечения технически приемлемого суммарного превращения синтез-газа, как показали промышленные опыты (рис. 9), необходимо иметь реактор со значительной высотой слоя, так как концентрация окиси углерода и водорода уменьшается все больше с соответствующим уменьшением скорости реакции. На практике вм есто одного большого реактора устанавливают 2 или 3 реактора меньшего размера. По сравнению с работой в одну ступень такой метод работы позволяет примерно на 7з сокра тить реакционный объем и количе- [c.91]

    Катализаторпый шлам циркулирует в системе оо скоростью, обеспечивающей полную замену содержимого реактора примерно каждые 3 мин. Температура в реакторе увеличивается примерно на 10°. Глубина превращения O-f Н2 за одну ступень составляет 70%. i 1 л катализатора получается 350—450 г сутки продуктов синтеза. Из 1 м превращенной смеси O-f Н2 получается 189 г углеводородов от Сз и выше. Состав продуктов показан в табл. 42. [c.117]

    Лишь значительно позже этому открытию было уделено необходимое внимание в 1949 г. Хэсс и Александер [113] и в 1952 г. Бахман, Хэсс и Аддисон опубликовали подробные сведения о влиянии добавки кислорода на нитрование пропана и н-бутана азотной кислотой и двуокисью азота. При нитровании азотной кислотой с добавкой кислорода реакция превращения значительно ускоряется, но конеч-ный выход нитропарафинов сильно падает. Если же увеличить соотношение поверхности к объему реактора -или ввести водяной пар, то выход будет удовлетворительным по отнои1 нию к прореагировавшему углеводороду. При нитровании двуокисью азота добавка кислорода ускоряет. превращение и увеличивает выход. При этом время пребывания при нитровании можно значительно сократить. Добавка кислорода при нитровании с двуокисью азота благоприятно влияет на нитрование, чем при при- ленении азотной кислоты. [c.298]

    Из нижней части аппарата / непрерывно отбирают часть углеводорода, содержащего немного сульфоновых кислот, и перекачивают его в нижнюю часть экстракционной колонны 2, которая наполнена разбавленным, почти 50 %-ным метанолом. Более легкая смесь углеводородов и сульфоновых кислот вспльивает вверх, причем последние вымываются разбавленным метанолом Вытекающие сверху углеводороды непрерывно поступают обратно в реактор, где вновь подвергаются действию газовой смеси (ЗОг + Ог). Последняя циркулирует в системе, поскольку степень ее превращения за каждый проход через реактор неве.пика, и пополняется непрерывно свежей смесью ЗОг + Ог по мере расходования. Как и в лабораторных опытах, здесь также можно узнать о начоле реакции по помутнению жидкости, но ее окраска уже не изменяется. В первое время после начала экстракции метанол мутнеет, ио но мере того, как содержание в нем сульфоновых кислот увеличивается, это помутнение исчезает почти полностью. После того как концентрация последних достигает 20—25%, экстракт начинают непрерывно отбирать, пополняя содержимое экстракционной колонны свежим разбавленным метанолом. Таким образом достигнутую концентрацию [c.489]

    Как и в случае этиленхлоргидрина, для подавления побочных реакций желательно работать при температуре ниже 50—60 °С. При этих условиях этилендихдорид можно в значительной степени вывести из верха колонны газовым потоком и предотвратить образование второй фазы в реакторе. При реакции превращения пропилена более тяжелый дихлорид не позволяет работать с чистым пропиленом, что было бы выгодно. Тем не менее, дихлорид можно отогнать во время реакции обмена прп 50—60 °С, использовав поток углеводорода, содержащий более 45% пропилена. Не вступивший в реакцию газ содержит инертные газы метан, этан, пропан плп азот. При начальном контакте с пропиленовым потоком водная фаза должна содержать не более 0,5 г/л хлора [12]. [c.72]

    Существует два основных метода охлаждения реагирующей смеси между стадиями адиабатического процесса. С конструктивной точки зрения проще всего смешивать реагенты с байпасной частью исходной смеси. Не обязательно использовать холодное сырье можно вводить в реактор холодное инертное вещество, разбавитель нли смесь какого-либо иного состава. Например, в процессе окисления двуокиси серы используется подача холодного воздуха. В любом случае недостатком такого метода является то, что реагирующая смесь, в которой уже достигнута некоторая степень превращения, разбавляется пепрореагировавшим веществом. Альтернативным методом является охлаждение в промежуточном теплообменнике, где состав реагирующей смеси совсем или почти не меняется. Для каталитических реакций скорость процесса в отсутствие катализатора пренебрежимо мала поэтому, скажем, из реактора с неподвижным слоем газовый поток можно направлять во внешний теплообменник, а затем возвращать в следующий адиабатический слой без заметного изменения степени полноты реакции. В гомогенно-каталитическом процессе реакция может происходить и в теплообменнике, тогда теплообменник можно рассматривать как неадиабатический трубчатый реактор. [c.216]

    Расходы на предварительный подогрев пропорцпопальны так как через предварительный теплообменник проходит только доля всего потока, а прирост температуры в теплообменнике пропорционален т . Стоимость слоя катализатора принимается пропорциональной его массе. Как и в разделе VIII.1, степень превращения в реакторе пропорциональна величине [c.244]

    Упражнение 1Х.8. Лабораторные исследования дегидратации этилового спирта показывают, что реакция С2Н5ОН —> С2Н4 -Ь Н2О протекает-по первому порядку. Константа скоростп реакции при 150° С равна 0,52 л (моль-сек). Предложено сконструировать небольшой лабораторный реактор, который работал бы прп давлении 2 атм и температуре 150° С и давал бы 35%-е превращение спирта при массовой скорости потока 9,9 кг/ч. Если диаметр реактора 10 сл, то какова должна быть его длпна Предполагается, что газ идеален, реактор работает в режиме идеального вытеснения, а теплотой реакции можно пренебречь. [c.265]

    СОСТОИТ в том, чтобы получить наибольший выход промежуточного вещества А , то в случае, когда энергия активации второй реакции больше, чем первой, оптимальным является падающий температурный профиль по длине реактора. Здесь снова при исходной смеси, состоящей из чистого вещества А , оптимальная температура на входе бесконечна, так что необходимо ограничить температуру верхним пределом Т. Нижний температурный предел в этой задаче также существен. Действительно, увеличение температуры способствует протеканию реакции с большей энергией активации А А ) за счет другой реакции (Л1 -> 2). и потому мы могли бы добиться практически полного превращения А ь А 2, проводя процесс в бесконечно длинном реакторе при бесконечно малой температуре, что, разумеется, бессмысленно. Нри > О существует оптимальная длина реактора, с превышением которой выход вещества А, уменьшается. Некоторые оптимальные профили показаны на рис. IX.6, из которого следует, что по мере увеличения длпны реактора максимальная температура Т поддерживается на все более коротком отрезке и падение температуры от Т до Т . становится все круче. Для большей ясности деталей кривые на рис. IX.6 проведены с общей абсциссой 2 = при этом точки А, В,. . Е обозначают вход в слой соответствующей длины. Точка Е отмечает вход в слой наибольшей длины, который выгодно использовать при данной минимальной температуре [c.269]

    Упражнение IX.30. Покажите, что функция распределения времени пребывания в трубчатом реакторе при ламинарном режиме течения имеет вид 2z /0 (где 0р — время нрохождения любого элемента потока и — минимальное время нрохождения). Диффузией, входным и концевым эффектами можно ирепебречь. Покажите отсюда, что степень превращения в реакции второго порядка с константой скорости к равна 2i 1 In [В/(В 4- 1)] . Здесь В = = akt па — исходная концентрация обоих реагентов. [c.290]


Смотреть страницы где упоминается термин Реакторы превращения: [c.267]    [c.267]    [c.281]    [c.100]    [c.92]    [c.525]    [c.195]    [c.72]    [c.203]    [c.215]    [c.228]    [c.266]   
Методы кибернетики в химии и химической технологии 1968 (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние распределения времени пребывания на превращение в реакторах с непрерывным потоком

Время пребывания компонентов в зоне реакции и степень превращения для одиночного аппарата и каскада реакторов идеального смешения

К о в а л е в, Л. А. Р а с т р и г и н, К. К. Р и п а. Применение метода обучающейся модели для описания работы химического реактора на примере превращения фурфурола в малеиновый ангидрид

Каскад реакторов степень превращения

Моделирование процесса превращения нитробензола до анилина в трубчатом реакторе

Моделирование стационарного процесса химического превращения в каскаде реакторов с мешалкой при разных температурах в каждом реакторе

Моделирование стационарного процесса химического превращения в реакторе с мешалкой

Объем реактора функция глубины превращения

Объемы реакторов и степень превращения

Определение зависимости концентраций компонентов для стационарного процесса химического превращения в реакторе с мешалкой. Определение оптимальной скорости подачи исходной смеси

Политропические реакторы температура и степень превращения

Превращение в реакторах с несмешивающпмся потоком. Возможность описания промежуточных систем

Псевдоожиженным слой как каталитический реактор Степень превращения в каталитических реакциях первого порядка

Расчетное уравнение. Определение оптимального соотношения между компонентами сырья на входе в реактор. Определение оптимального значения глубины превращения за один пропуск сырья через зону катализатора Одноступенчатая система с рециркуляцией непрореагировавшего сырья

Реактор объем, зависимость от степени превращения

Реакторы для химического превращения твердых веществ

Реакторы идеального вытеснения и степень превращения

Реакторы идеального смешения и степень превращения

Реакторы непрерывного действия и степень превращения

Реакторы периодического действия и степень превращения

Соотношения между выходом целевого продукта, селективностью и степенью превращения для различных моделей реакторов

Степень превращения в идеальных реакторах

Степень превращения в реакторах различного типа

Степень превращения в реакторах с сегрегацией

Степень превращения для реакторов

Степень превращения на различной длине реактор

Уравнения локальной кинетики для основных случаев химических превращений, протекающих в реакторах нейрерывного действия

Уравнения локальной кинетики для основных случаев химических превращений, протекающих в реакторах непрерывного действия

Уравнения локальной кинетики для основных случаев химических превращений, протекающих в реакторах периодического действия

Число реакторов и степень превращения



© 2025 chem21.info Реклама на сайте