Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Движение жидкостей режимы

    Режимы движения жидкости. Режим движения вязкой жидкости может быть ламинарным или турбулентным. [c.45]

    Два вида движения жидкости. Режим движения жидкости как в полностью заполненных трубопроводах (так называемое напорное течение), так и в потоках с открытой поверхностью зависит от значения числа Ре. [c.32]

    Гидравлический режим слоя определяется режимом в норовом канале, причем движение в этих каналах может быть как ламинарным, так и турбулентным. К двц ,кению в норовом канале могут быть применены законы движения жидкости по трубам. [c.63]


    Струйные тарелки (рис. 18) создают направленное движение жидкости и хорошо работают при высоких жидкостных нагрузках. При невысоких скоростях газа (пара) тарелки работают в барботажном режиме, кроме того, при малых скоростях пара наблюдается провал жидкости. Минимально допустимая скорость по газу в отверстиях чешуек составляет 7 м/с. При повышении скорости барботажный режим переходит в струйный (капельный), при этом сплошной фазой становится газ (пар), а жидкость распыляется на капли. Этот режим отвечает наибольшей поверхности контакта фаз и является рабочей областью, скорость пара в отверстиях при этом выше 12 м/с. Тарелки рекомендуются для разделения загрязняющих сред. Ы [c.64]

    Константа скорости реакции к = 0,4 (кмоль-с), начальная концентраций исходного вещества Сд = 0,25 кмоль/м средняя скорость потока у = 0,1 м/с. Режим движения жидкости ламинарный. Определить среднюю степень превра- щения и сравнить ее с предельным значением а при полном вытеснении. [c.331]

    Нисходящее движение твердых частиц во взвешенном состоянии наблюдается в вертикальных трубах (стояках), предназначенных для транспортировки твердого материала из одной емкости в другую, расположенную ниже первой [157, 158]. В системах жидкость—жидкость режим движения капель во взвешенном слое считается достаточно перспективным как для проведения процессов теплообмена в колонных теплообменниках прямого контакта, предназначенных для опреснения морской воды [159, 160], так и для процессов массообмена в распылительных экстракционных колоннах [161, 162]. [c.95]

    Если изменять скорость движения жидкости в трубе, то начиная с некоторого значения скорости (критического) один режим течения сменяется другим. Закон, которому подчиняется переход движения жидкости из одного режима в другой, впервые был установлен английским ученым Рейнольдсом. В результате проведения опытов с подкрашенными струйками воды Рейнольдс установил, что режим движения тесно связан со значением определенного критерия, названного его именем. Критерий Рейнольдса Ре — это безразмерный параметр, определяемый по формуле [c.15]

    Деасфальтизация гудрона пропаном с получением асфальта деасфальтизации проводится в экстракторах — противоточных вертикальных цилиндрических колоннах высотой 18—22 м и диаметром 2,4—3,6 м, оборудованных жалюзийными или перфорированными тарелками с керамической насадкой. Реже применяют роторно-дисковой контактор — вертикальный аппарат, вдоль оси которого проходит вал с дисками (ротор), вращающийся между кольцевыми перегородками, закрепленными на стенках аппарата (статор). Выше и ниже контактных устройств в экстракторах расположены зоны отстоя экстрактных и рафи-натных растворов. Во избежание кольцевого движения жидкости в этих зонах вал ротора в роторно-дисковых контакторах заключен в кожух. Необходимый для процесса температурный градиент создается не только нагревом до соответствующих температур сырья и растворителя, но и установкой внутреннего или внешнего подогревателя в верхней части экстрактора. [c.138]


    Режим движения жидкости характеризуется числом Рейнольдса, которое вычисляется но формуле [c.34]

    Для процесса отстаивания требуется определенное время, достаточное для осаждения взвешенных частиц и капелек воды на дно аппарата, и вместе с тем соответствующая скорость движения жидкости через отстойник, обусловливающая ламинарный режим потока. [c.277]

    Режим 5 (большие нагрузки по пару и жидкости) — захлебывание колонны, характеризующееся переполнением сливных патрубков и обращенным движением жидкости на тарелке. Режим захлебывания тарельчатой колонны может рассматриваться как предельный режим по нагрузкам. [c.323]

    Взаимодействие между фазами осуществляется на поверхности смоченных элементов насадки. Этот режим может заканчиваться в первой точке перегиба, в так называемой точке торможения газа, при этом скорость газа уменьшается из-за относительно большой скорости жидкости, движущейся противотоком эта точка лежит тем выше, чем больше плотность орошения. Однако точка торможения не всегда четко обнаруживается. После нее можно наблюдать возникновение промежуточного режима, наблюдаемого при струйчато-пленочном движении жидкости. Жидкость покрывает насадку в виде стекающей тонкой пленки и отдельных струй. Взаимодействие между фазами происходит на поверхности пленки и струй жидкости и в точках контакта жидкости с отдельными элементами насадки. Пленка и струи жидкости подтормаживают поток газа с образованием отдельных вихрей. [c.388]

    Течение жидкости в трубопроводе характеризуется режимом (ламинарный или турбулентный) и потерями давления. При малых скоростях наблюдается ламинарный режим, а при больших— турбулентный. Переход от одного режима к другому определяется по величине числа Рейнольдса при Ке 2320 — ламинарный, а при Ке > 2320 — турбулентный. Потеря давления (или перепад давления) вызывается сопротивлением движению жидкости за счет трения, вязкости и шероховатости поверхности труб. Для ньютоновских жидкостей в турбулентном режиме перепад давления, коэффициент сопротивления и другие параметры, характеризующие течение, связаны уравнением Бернулли [741  [c.274]

    Периодические процессы синтеза аминов из хлорпроизводных проводят в автоклавах с мешалкой и рубашкой для подогрева реакционной массы паром (или высокотемпературными теплоносителями) и охлаждения водой. Непрерывные процессы осуществляют в трубчатых реакторах с трубами малого диаметра, что позволяет уменьшить толщину стенок и турбулизовать режим движения жидкости. Одним из вариантов является проведение реакции в системе из подогревателя и адиабатического реактора — в первом аппарате реакционная масса нагревается до нужной тем- [c.277]

    Х-23. Предполагается, что реактор описывается С-кривой, соответствующей данным, которые приведены в задаче 1Х-20, и что режим движения жидкости в аппарате может быть представлен моделью из двух параллельных реакторов идеального смешения. [c.299]

    Другие системы, например, одиночные аппараты с мешалками, система смеситель—сепаратор и каскады таких аппаратов, также широко распространены в технологических схемах химических производств. Методы расчета всех указанных систем различны и зависят от выбранной модели, отражающей режим движения жидкости в аппарате, относительной скорости химической реакции и процесса переноса массы и от растворимости активных компонентов каждой системы. [c.381]

    Основное влияние на гидродинамический режим процесса отстоя в дегидраторе оказывает тип ввода сырья. В гл. 6 было показано, что в настоящее время в отстойниках используют вводы трех основных типов нижний, торцевой и через распределительные головки. Наиболее просто определить ПФ для отстойника с вводом сырья через распределительное устройство, расположенное в нижней части аппарата, и отбором сырья из верхней части аппарата (см. рис. 2.5, с. 29). В этом случае капли будут двигаться против потока нефти. Поэтому абсолютная скорость осаждения капли объемом V сложится из скорости движения сплошной фазы к , направленной вверх, и скорости осаждения капли (У), направленной вниз. Если в отстойной части аппарата соблюдается ламинарный режим движения жидкости, то все капли, для которых скорость сплошной фазы больше скорости их осаждения, не осядут и останутся в товарной нефти. Поэтому будет справедливо равенство  [c.127]

    Ламинарный режим движения жидкости у вертикальной стенки Локальное 10 -103 0,6 0,25 [c.116]


    Слой сыпучего материала можно рассматривать как систему поровых каналов, по которым движется газ или жидкость. Режим движения среды в поровых каналах может быть ламинарным, переходным и турбулентным в зависимости от величины числа Рейнольдса [c.358]

    Указанный режим работы малообъемных роторных смесителей наблюдается, когда число прорезей или отверстий (щелей) на цилиндре ротора совпадает с числом отверстий на цилиндрической поверхности статора и, кроме того, имеет место полное совпадение прорезей, когда аппарат открыт , и их полное перекрытие, когда аппарат закрыт . При таком режиме работы аппаратов амплитуда колебания динамического давления максимальна, что существенно стимулирует гидродинамические процессы, повышает эффективность процессов смешения и массообмена. При такой конструкции аппаратов в момент совпадения прорезей происходит импульсная смена порций обрабатываемой смеси в зазоре между цилиндрами. Следовательно, для анализа эффективности работы важно знать не только профиль скорости установившегося турбулентного движения жидкости, но и время, необходимое для установления данного типа течения. Для его определения воспользуемся нестационарным уравнением движения жидкости для окружной Уе скорости (цилиндрическая система координат г, 0, г, ось г которой совпадает с осью вращения ротора). [c.321]

    Применение в расчетной практике уравнения (6.40) возможно, если известно для рассматриваемого случая значение коэффициента теплоотдачи, определение которого сопряжено с большими трудностями, так как на теплоотдачу вл1[яет много факторов режим и скорость движения жидкости, физические параметры жидкости, форма и размеры теплообменной поверхности и др. Очевидно, что для проведения расчетов по теплообмену необходимо уравнение, [c.133]

    Характеризует действие сил трения в подобных потоках и определяет режим движения жидкости [c.148]

    Захлебывание насадок. Между газом и жидкостью, движущейся по насадке, возникают силы трения, которые увеличиваются с возрастанием относительной скорости движения газа и жидкости. В случае противотока газа и жидкости силы трения, действующие на жидкость, направлены вверх, т. е. противоположны направлению действия силы тяжести. Эти силы трения возрастают с увеличением скорости газа до некоторого предела, когда они становятся равными силе тяжести, действующей на жидкость. При этом движение жидкости по насадке начинает тормозиться потоком газа. Такой режим работы колонны — режим подвисания начинается по достижении некоторой предельной скорости газа, называемой пределом подвисания. В этих условиях газ начинает барботировать через жидкость (стр. 599), и поверхность соприкосновения между газом и жидкостью значительно возрастает, что приводит к интенсификации процесса массообмена. Однако одновременно в колонне резко увеличивается гидравлическое сопротивление. [c.610]

    Режим движения жидкостей в осадках при фильтровании является ламинарным, и перепад давления, затрачиваемый на трение в капиллярах осадка, пропорционален вязкости жидкости. Поэтому скорость промывки осадка промывной жидкостью С р будет пропорциональна отношению вязкостей фильтрата lф и промывной жидкости )л р, т.е. [c.380]

    Критерий Эйлера в гидравлике, как правило, является определяемым критерием, а определяющим для него служит критерий Рейнольдса, характеризующий режим движения жидкости. Эту связь применим и для перемешивания, что будет оправдано и по существу и формально, так как известно, что коэффициент сопротивления ф является функцией критерия Рейнольдса  [c.402]

    Режим движения жидкости определяется значением критерия Рейнольдса  [c.60]

    Идеальной моделью движения жидкостей в порах является закон Стокса для течения жидкости в цилиндрическом капилляре. Вывод закона сводится к следующему. Предполагается ламинарный режим течения жидкости по цилиндрическому капилляру радиусом г и длиной I (рис. IV. 15). Каждый слой жидкости в капилляре течет со своей скоростью, возрастающей от нуля (около стенки капилляра) до и акс (в центре его). Сила внутреннего трения по цилиндрической границе движения радиусом х в соответствии с уравнением Ньютона равна [c.231]

    Турбулентный режим - особая форма движения жидкости, при которой ее элементы [c.185]

    Сопротивление трения, называемое также сопротивлением по длине, существует при движении реальной жидкости по всей длине трубопровода. На него оказывает влияние режим течения жидкости (ламинарный, турбулентный, степень развития турбулентности). Так, турбулентный поток, как отмечалось, характеризуется не только обычной, но и турбулентной вязкостью, которая зависит от гидродинамических условий и вызывает дополнительные потери энергии при движении жидкости. [c.85]

    Начиная с некоторых значений критерия Рейнольдса, роль лобового сопротивления становится преобладающей, а сопротивлением трения можно практически пренебречь. В данном случае, как и при движении жидкости по трубам, наступает автомодельный (по отношению к критерию Рейнольдса) режим. [c.96]

    Следует отметить, что при движении жидкости (газа) через зернистый слой турбулентность в нем развивается значительно раньше, чем при течении по трубам, причем между ламинарным и турбулентным режимами нет резкого перехода. Ламинарный режим практически существует примерно при Re < 50. В данном режиме для зернистого слоя X = A/Re [ср. с уравнениями (11,91) и (И,112)1. [c.104]

    Некоторые аппараты работают с подвижным зернистым слоем движение газов (реже жидкостей) происходит сквозь медленно движущиеся сверху вниз (под [c.105]

    Конве1сция жидкости (газа) может быть вынужденной либо свободной. В теплообменных аппаратах наблюдается вынужденная кон векция /КИДКОСТИ. Режим движения жидкости в них может быть ламинарным, переходным либо турбулентным. [c.149]

    Турбулентный (беспорядочный) режим — это движение жидкости с перемешиванием частиц струйность потока нарушается, и траектории частиц приобретают сложную форму, пересекаясь между собой. [c.15]

    Если режим движения жидкости ближе к турбулентному, чем к ламинарному, то, кроме рассмотренных выше факторов, следует учитывать также и влияние турбулентной диффузии. Значение коэффициента турбулентной диффузии во всем объеме реактора, за исключением его части, непосредственно прилегающей к стенке, как правило, значительно больше значения коэффициента обычной молекулярной диффузии, и его величина возрастает с увеличением числа Рейнольдса В этом случае радиальная компонента оказывает также положительное воздействие, поскольку она компенсирует эффекты, препятствующие применению простого метода расчета, описанного в 2.2 и основанного на модели идеального вытеснения среды. В ряде работ [22—29] показано, в каких случаях продольная турбулентная диффузия влияет обратным образом и исключает возможность исиользования модели идеального вытеснения. В недавно опубликованных работах Левеншпиля [30], Крамерса и Уэстертерпа [9] приводятся интересные обзоры по данному вопросу. В первом приближении для простых реакций можно принять, что, если [c.60]

    У —[Ь (г — 1)] /, 2 -V г — 1 при i оо начинается конвективное движение жидкости, возникают стационарные ячейки Бенара (рис. 7.16, б). Наконец, при а>Ь-1-1иг>а(а + + > 4- 3)/(о -Ь 1 — Ь) решение не выходит ни на стационарный, ни на периодический режим. Такое решение показано на рис. 7.16, Ь. Таким образом, система из трех уравнений (7.20) описывает стохастические процессы без введения каких-либо флюктуирующих сил. Решение, показанное на рис. 7.16, Ь называют странным аттрактором. Аттракторы — это множество значений, на которые система выходит при оо. Поскольку до модели Лоренца аттракторы обычно представляли как множество изолированных особых точек или замкнутых кривых на фазовой плоскос- [c.321]

    Продольная диффузия в каскаде сосудов с неидеальным потоком жидкости. Диффузионные характеристики могут быть найдены также и для сосудов, в которых имеются области с различными отчетливо выраженными режимами течения жидкости. В подобном случае удобнее исследовать каждый аппарат каскада раздельно. Однако если режим движения жидкости мало отличается от режима идеального вытеснения, можно воспользоваться относительно простым методом, основанным на допущении, что между областями с неодинаковыми режимами потока отсутствует продольная диффузия. Для всех практических расчетов это допущение оказывается правильным при условии соблюдения неравенства DIuL) < 0,01 для каждой области аппарата. [c.268]

    Количественные данные, полученные из графиков 1Х-38, относятся только к геометрии того реактора, с которым работали указанные исследователи. Однако можно предположить, что эта модель описывает режим движения жидкости и в других реакторах с мешалками, имеюш,их обш,ие признаки с аппаратом, примененным Шоле и Клотьер ом. [c.288]

    Полунепрерывные процессы. Ионнообмейные колонны (рис. ХИ-13, г) могут служить примером периодического процесса по отношению к твердому материалу, тогда как режим движения жидкости соответствует потоку идеального вытеснения. [c.347]

    Промежуточный режим наблюдается при пленочно-струйном движении. Жидкость покрывает насадку в виде тонкой пленки, причем значительная доля поверхности остается несмоченной. Пленка и струи жидкости затормаживают поток газа с образованием отдельных вихрей. Этому режиму соответствует линия бв на рис. Х-14. Вторая точка перегиба (а) — точка подвисання жидкости. В этой точке устанавливается скорость газа (пара) аиу, при которой жидкость начинает удержи- [c.682]

    Если Ке < Кекр, движение жидкости происходит в ламинарном режиме если же Ке > Ке,ф, движение жидкости является турбулентным (Кекр — критическое значение Ке). Область Ке Жвир можно в свою очередь разделить на переходную область, в которой режим движения жидкости является недостаточно устойчивым, и на область, в которой турбулентный режим вполне развит. Значение Кбкр зависит от конкретных условий движения жидкости (в трубах, по пластинам и т. д.). [c.60]

    Переход от ламинарного к турбулентному движению характеризуется критическим значением Ке р. Так, при движении жидкостей по прямым гладким трубам Ке р = 2320. При Re << 2320 течение обычно является ламинарным, поэтому данную область значений Не называют областью устойчивого ламинарного режима течения. При Не 2320 ча1це всего наблюдается турбулентный характер движения. Однако при 2320 <1 Ке <3 10 ООО режим течения еще неустойчиво турбулентный (эту область изменения значений Не часто называют переходной). Хотя турбулентное движение при таких [c.41]

    Рассмотрим более подробно ламинарное движение жидкости через зернистый слой. Такой режим течения жидкости часто наблюдается в одном из распространенных процессов разделения неоднородных систем — фильтровании через пористую среду (слой осадка и отверстия фильтровальной перегородки). При малом диаметре пор и соответственно низком значении Re (меньшем критического) движение жидкости при фильтровании является ламинарным. Подставив X из уравнения (П,134а) и выражение (11,132) для Re Б уравнение (11,130), после элементарных преобразований получим [c.104]


Смотреть страницы где упоминается термин Движение жидкостей режимы: [c.27]    [c.28]    [c.17]    [c.387]    [c.280]    [c.86]    [c.162]   
Основные процессы и аппараты Изд10 (2004) -- [ c.0 ]

Основные процессы и аппараты химической технологии Издание 8 (1971) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Движение жидкости



© 2025 chem21.info Реклама на сайте