Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Филогенетическое древо эволюции

    Другой важный момент, который следует усвоить, заключается в недопустимости давать результатам эволюции какие-либо морально-этические оценки. Высокоразвитые в эволюционном отношении организмы не стали лучше в нравственном отношении они просто лучше адаптированы к своей среде обитания по сравнению со своими вымершими предками. Следует также помнить, что все современные организмы в силу самого факта своего существования, по-видимому, приспособлены к занимаемой ими среде весьма эффективно, независимо от своего положения на филогенетическом древе. Эволюция столь же беспристрастна, как, полагают, должно быть беспристрастно правосудие будут увеличиваться в числе лишь те организмы, которые производят наибольшее число жизнеспособных потомков, безотносительно к тому, плохими или хорошими их считают люди. [c.27]


Рис. 21.13. Филогенетическое древо генов глобинов. Кружочками обозначены дупликации предковых генов, дающие начало новым линиям эволюции. Обозначено примерное время, прошедшее от момента дупликаций в миллионах лет. У человека гены а1 и а2 идентичны вследствие конверсии, однако присутствие дуплицированных генов у многих (а возможно, и у всех) позвоночных свидетельствует о том, что дупликации Рис. 21.13. Филогенетическое древо <a href="/info/98720">генов глобинов</a>. Кружочками обозначены дупликации предковых генов, дающие <a href="/info/1532385">начало новым</a> линиям эволюции. Обозначено примерное время, прошедшее от момента дупликаций в миллионах лет. У <a href="/info/199962">человека гены</a> а1 и а2 идентичны вследствие конверсии, однако присутствие дуплицированных генов у многих (а возможно, и у всех) позвоночных свидетельствует о том, что дупликации
    Виды-это репродуктивно изолированные единицы, эволюционирующие поэтому независимо друг от друга. В силу такой независимой эволюции виды с течением времени, вероятно, должны все более расходиться между собой в генетическом отношении. В начале этой главы отмечалось, что степень генетических различий, достигнутых между отдельными ветвями филогенетического древа, может служить мерой генетической дифференциации существующих ныне видов. Более того, по степени генетической дифференциации различных видов можно восстановить само филогенетическое древо, если оно не известно. Это возможно потому, что эволюция-процесс постепенный, и, следовательно, у генетически сходных видов их общий предок скорее всего существовал и в менее отдаленном прошлом, чем у видов, более сильно различающихся в генетическом отношении. [c.220]

    Предположим теперь, что нам ничего неизвестно о филогениях человека, макака-резуса и лошади. Данные, приведенные в табл. 26.6, свидетельствуют о том, что конфигурация филогенетического древа, изображенная на рис. 26.8, наиболее вероятна. Эволюция в целом-это процесс постепенного накопления изменений. Таким образом, виды, генетически более сходные между собой, как правило, имеют общего предка в менее отдаленном прошлом, чем генетически более различающиеся виды. На рис. 26.9 изображены два теоретически возможных варианта филогений человека, макака-резуса и лошади указаны также минимальные числа нуклеотидных замен, необходимых для образования каждой ветви. Ясно, что оба этих варианта крайне маловероятны, даже если судить о филогениях, лишь исходя из информации об аминокислотных последовательностях молекул цитохрома с. [c.224]

    Если бы оказалось, что теория нейтральности молекулярной эволюции справедлива для многих локусов, то эволюция белков и ДНК могла бы служить своеобразными часами эволюции в целом. Степень генетической дифференциации видов можно было бы использовать как меру их филогенетического родства. В этом случае вполне закономерно реконструировать филогении на основе генетических различий. Более того, таким способом можно грубо оценивать реальное хронологическое время различных филогенетических событий. Предположим, что мы имеем филогенетическое древо, подобное тому, которое изображено на рис. 26.10. Если бы скорость эволюции цитохрома с оставалась все время постоянной, то число нуклеотидных замен в каждой ветви древа было бы прямо пропорционально соответствующему времени эволюции. При условии что реальное геологическое время одного события данной филогении известно из какого-либо иного источника (например, из палеонтологических данных), можно бьшо бы определять время и всех остальных событий. Таким образом, молекулярные часы, выверенные по какому-то одному известному событию, можно использовать для измерения времени другого события этой филогении. [c.235]


    В этой работе использовались аминокислотные последовательности 7 белков 17 видов млекопитающих. Вначале аминокислотные последовательности всех белков были написаны подряд друг за другом так, как будто они представляют единую последовательность аминокислот. Затем было определено минимальное число нуклеотидных замен, необходимых для того, чтобы объяснить происхождение этих белков от общего предка. Соответствующие значения числа замен были определены для каждой ветви филогенетического древа. Далее использовались два приема. Прежде всего оценивалось общее число замен в единицу времени на разных этапах эволюции. При этом подвергалась проверке гипотеза, согласно которой общая скорость изменений постоянна на протяжении всего времени эволюции. Вероятность того, что наблюдавшаяся изменчивость обусловлена случайными причинами, очень мала 4-10 . Это с высокой достоверностью означает, что скорость эволюции белков не была постоянной, как этого можно бьшо бы ожидать, исходя из предположения о пуассоновском характере процесса. [c.236]

    Для построения филогенетического древа требуются материалы о фрагментах скелетов предполагаемых предков, а также данные сравнительной анатомии и сравнительной генетики. Для анализа механизмов эволюции эти скелетные остатки ценности не представляют. Нам приходится основываться на сравнениях генетических различий между современными видами. Анализ [c.7]

    Биологическая конвергенция — образование сходных признаков на разных траекториях эволюционного процесса — важное свидетельство детерминированности биологической эволюции. Анализ имеющихся данных показывает, что конвергенция является скорее правилом, чем исключением, и захватывает не только морфологию, но и физиологию и биохимию неродственных организмов. Неоднократное возникновение в принципе одинаковых приспособлений на разных эволюционных направлениях означает существование предельно совершенного решения. К этому решению стремятся эволюционные траектории берущие начало в разных местах филогенетического древа. [c.234]

Рис. 9-58. Филогенетическое древо возможной эволюции митохондрий, хлоропластов и их бактериальных предков. Как видно из рисунка, кислородное дыхание, видимо, по крайней мере три раза независимо возникало в линиях фотосинтезирующих прокариот-у зеленых бактерий, пурпурных бактерий и сине-зеленых водорослей (цианобактерий). Аэробные пурпурные бактерии дали начало митохондриям, тогда как аэробные цианобактерии были предками хлоропластов. Рис. 9-58. Филогенетическое древо возможной <a href="/info/511065">эволюции митохондрий</a>, хлоропластов и их бактериальных предков. Как видно из рисунка, <a href="/info/231324">кислородное дыхание</a>, видимо, по <a href="/info/1518082">крайней мере</a> три раза независимо возникало в линиях <a href="/info/1531938">фотосинтезирующих прокариот</a>-у <a href="/info/97663">зеленых бактерий</a>, <a href="/info/38023">пурпурных бактерий</a> и <a href="/info/98897">сине-зеленых водорослей</a> (цианобактерий). Аэробные <a href="/info/38023">пурпурные бактерии</a> дали начало митохондриям, тогда как аэробные цианобактерии были предками хлоропластов.
    Это филогенетическое древо позвоночных иллюстрирует некоторые стороны эволюции МНС и Т-клеток. Показаны два функциональных критерия существования МНС (наличие цитотоксических Т-лимфоцитов (Тц) и реакции смешанной культуры лейкоцитов (СКЛ), а также биохимические и молекулярно-биологические данные, свидетельствующие об экспрессии белков и генов МНС классов I и И. Пустой квадрат означает недостаточность имеющихся данных. [c.285]

    Здесь для нас представляют особый интерес косвенные результаты биохимических исследований. Количественная мера биохимической дифференцировки между ныне живущими видами А, В, С и т. д. независимо от того, какая именно используется мера, может быть наложена на филогенетическое древо, ветви которого заканчиваются видами А, В, С,. .. Известное или выведенное геологическое время, прошедшее после дивергенции соответствующих ветвей, служит знаменателем. Сопоставляя эти две меры, мы получим количество изменения, происходящего на макромолекуляр- ном уровне за единицу времени, или скорость молекулярной эволюции, [c.278]

    В процессе эволюции по мере усложнения организмов содержание ДНК в них увеличивается, однако нет строгой зависимости между содержанием ДНК и местом на филогенетическом древе (табл. 5.2). Более точно усложнению организмов соответствует увеличение количества и разнообразия генов и, соответственно, белков. [c.161]

    В настоящее время основным является филогенетический подход к систематике микроорганизмов, который учитывает родственные связи и пути эволюции организмов. В такой классификации иерархия таксонов отражает генеалогическое древо. Однако при отсутствии в большинстве случаев ископаемых остатков микроор- [c.12]

    ЭВОЛЮЦИОННОГО древа, на концах которой находятся человек и обезьяна, отошла от ствола млекопитающих еще до того, как произошло разделение на плацентарных и сумчатых. Несмотря на эти ошибки, можно лишь удивляться, Что изучение одного-единственного белка позволяет так хорошо восстановить филогенетические отношения между такими разными организмами, как те, которые представлены на рис. 26.10. Изучение аминокислотных последовательностей белков очень много дает для понимания эволюции. [c.225]

    Паралогичные гены-это потомки дуплицированного предкового гена. Паралогичные гены, следовательно, эволюционируют в пределах одного и того же вида (а также параллельно у различных видов). Гены, кодирующие а-, Р-, у-, и 5-, е-, -цепи гемоглобина у человека, парало-гичны. Эволюция паралогичных генов отражает изменения, накопившиеся с момента дупликации предкового гена. Гомологии между пара-логичными генами позволяют построить филогении генов, т.е. проследить эволюционную историю дуплицированных генов в одной ветви филогенетического древа организмов. На рис. 21.13 изображена филогения дупликаций гена, давшего начало генам миоглобина и гемоглобина современного человека. [c.227]


    Для разных белков характерны различные скорости эволюции. При анализе филогенетических различий между близкородственными организмами можно использовать аминокислотные последовательности быстро эволюционирующих белков, таких, как фибринопептиды млекопитающих (рис. 26.11). Карбоангидразы-это быстро эволюционирующие белки, играющие важную физиологическую роль при обратимой гидратации СО2, а также в некоторых секреторных процессах. На рис. 26.12 изображено филогенетическое древо некоторых приматов, построенное на основе данных об аминокислотной последовательности карбоангид-разы I с указанием минимально необходимого числа нуклеотидных замен в каждой ветви древа. Г енетические изменения, происходящие в ходе эволюции близкородственных видов, можно изучать также с помощью других методов, таких, как гибридизация ДНК, электрофорез в гелях и иммунологические методы. [c.228]

    Реконструкция филогений по генетическим различиям основана на предположении о том, что генетическое сходство отражает сходство филогенетическое. В целом taKoe предположение разумно, поскольку эволюция-это процесс постепенных изменений. Однако различия в скоростях генетических изменений в различных ветвях филогенетического древа могут служить источником ошибок. Предположим, что какой-то вид А отщепился от общего предка трех видов А, В и С до того, как разошлись пути эволюции видов В и С. Предположим также, что в эволюционной линии, приведшей к возникновению вида С, изменения некоторого белка происходили намного быстрее, чем в двух других линиях. В результате может оказаться, что А и В будут более сходны по аминокислотным последовательностям данного белка, чем В и С. Филогения, построенная по данным об аминокислотных последовательностях, будет неправильной. [c.233]

Рис. 7-62. Филогенетическое древо возможной эволюции митохондрий, хлоропластов и их бактериальных предков. Полагают, что кислородное дыхание стало развиваться примерно 2 млрд. лет назад. Как видно из рисунка, такое дыхание, вероятно, независимо возникло в трех линиях фотосинтезирующих прокариот - у зеленых, пурпурных и синезеленых бактерий. По-видимому, какая-то форма аэробных пурпурных бактерий, утратившая способность к фотосинтезу, дала начало митохондриям, тогда как несколько различных синезеленых бактерий были предками хлоропластов. Детальный анализ нуклеотидных последовательностей показывает, что митохондрии скорее всего произошли от бактерий, напоминающих современные ризобактерии, агробактерии и риккетсии - три родственные группы, представители которых вступают в тесные Рис. 7-62. Филогенетическое древо возможной <a href="/info/511065">эволюции митохондрий</a>, хлоропластов и их бактериальных предков. Полагают, что <a href="/info/231324">кислородное дыхание</a> стало развиваться примерно 2 млрд. лет назад. Как видно из рисунка, <a href="/info/1854609">такое дыхание</a>, вероятно, независимо возникло в трех линиях <a href="/info/1531938">фотосинтезирующих прокариот</a> - у зеленых, пурпурных и синезеленых бактерий. По-видимому, какая-то форма аэробных <a href="/info/38023">пурпурных бактерий</a>, утратившая способность к фотосинтезу, дала начало митохондриям, тогда как несколько различных синезеленых бактерий были предками хлоропластов. Детальный <a href="/info/1386918">анализ нуклеотидных последовательностей</a> показывает, что митохондрии скорее всего произошли от бактерий, напоминающих современные <a href="/info/759945">ризобактерии</a>, агробактерии и риккетсии - три <a href="/info/1035194">родственные группы</a>, представители <a href="/info/1519841">которых вступают</a> в тесные
    Как уже отмечалось, одно из важней-пшх следствий гипотезы нейтральности-это положение о линейной зависимости частоты накопленных замен от времени, т. е. предсказание существования молекулярных часов эволюции. Для проверки концепции эволюционных часов требовались оценки времени разделения соответствующих ветвей филогенетического древа, полученные с использованием независимой шкалы времени, основанной, например, на палеонтологических данных. Участники ведущихся в литературе дискуссий относительно рассматриваемого следствия из гипотезы нейтральности часто оперируют этими данными. Для обоснования концепции эволюционных часов приводят, например, следующий аргумент некоторые глубоководные виды рыб с незапамятных времен обитают в океане и экологические условия их обитания должны быть очень сходны, если не одинаковы, на протяжении всего времени их существования тем не менее эволюция белков этих рыб протекала с постоянной скоростью, а- и -цепи гемо-глобш1а у млекопитающих, отличных у человека, со времени разделения дивергиро-вали в такой же степени, как а- и -цепи гемоглобина человека и гемоглобина рыб. С другой стороны, более детальные исследования некоторых частей филогенетических древ выявили отклонения от ли- [c.22]

    В гл. 1 говорилось, что данные об аминокислотной последовательности становятся более убедительными и информативными, когда мы имеем возможность сравнивать последовательности структурно и функционально родственных молекул. Здесь приводится несколько таких примеров для белков. Наиболее полная информация об аминокислотных последовательностях накоплена для гемоглобинов и родственных им гемсодержащих белков — миоглобинов. Сравнение последовательностей в пределах одного вида с очевидностью указывает на то, что между а- и /З-субъединицами гемоглобинов и миоглоби-ном существует четкое соответствие. По-видимому, у какого-то предкового организма был только один глобиновый ген, который после многократных дупликаций оказался представленным в виде нескольких копий. В результате дивергенции этих новых генов в ходе эволюции и появилось все множество глобинов. Анализируя последовательности либо на глаз , либо более тщательно с помощью компьютера, можно построить генеалогическое древо или, говоря эволюционным языком, филогенетическое древо. Миоглобин в большей степени отличается от а- и /3-цепей гемоглобина, чем эти цепи друг от друга. Следовательно, ген миоглобина, вероятно, должен был обособиться от гена гемоглобина до дивергенции а- и /3-цепей (рис. 2.17). [c.77]

    Случайность не была контролирующим фактором в создании мутаций, ведущих к образованию новых видов. В этом аспекте особенно широко изучается дрозофила, и результаты исследований склоняют в пользу неслучайности. На это указывает замечательная стабильность кариотипа у всех 2000 изученных видов дрозофилы. Хромосомы сохраняют неизменную основную конфигурацию 5 пар имеют форму палочек и 1 пара — форму точек. Филогенетические связи между разными видами можно установить на основании анализа структурных перестроек, происходивших в процессе эволюции, что позволяет построить филогенетическое древо рода Drosophila (Stone, 1962). Это показывает, что хромосомные мутации происходят неслучайным образом. Если бы кариотип эволюционировал случайным образом, то создать филогенетическое древо, основанное на хромосомных перестройках, было бы невозможно. Стоун указывает, что частота перестроек некоторых типов, обнаруженных у этого рода, сильно отличается от тех относительных частот, которые можно ожидать при случайном характере разрывов и воссоединений. [c.261]

    Адаптивная радиация представляет собой тот тип эволюции, который наблюдается в фазе пролиферации. А преобладающая форма эволюции при адаптивной радиации — это видообразование. События видообразования перврй очереди дают начало главным ветвям растущего филогенетического древа. Эти главные ветви соответствуют различным главным экологическим нишам. Вторая, третья и последующие очереди видообразования в каждой из главных ветвей приводят затем к подразделению имеющихся на данной территории или в данном местообитании экологических ниш между большим числом более высоко специализированных видов. [c.314]


Смотреть страницы где упоминается термин Филогенетическое древо эволюции: [c.553]    [c.236]    [c.238]    [c.13]    [c.177]    [c.352]    [c.32]    [c.483]    [c.27]   
Молекулярная биология клетки Том5 (1987) -- [ c.51 ]




ПОИСК







© 2025 chem21.info Реклама на сайте