Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Что такое дыхание

    Такое дыхание также связано с митохондриями, но вся освобождающаяся при этом энергия рассеивается в виде теплоты. [c.249]

    Этот эффект особенно выражен у неустойчивых к гипоксии животных. Однако, несмотря на это, изменения дыхания срезов мозга и печени у неустойчивых и у устойчивых животных при уменьшении рОг одинаковы. Это может быть только в том с.чучае, если у неустойчивых животных в большей степени, чем у устойчивых, активируются метаболические пути, компенсирующие снижение НАД-зависимого окисления. Оказывается, что это действительно так. Дыхание срезов в области низких рОг становится значительно более чувствительным к малонату — специфическому ингибитору сукцинатдегидрогеназы. [c.110]


    При диабете из-за нарушения работы химической машины организма в нем накапливается ацетон. Он попадает в мочу, а в тяжелых случаях и в легкие, отчего у диабетиков появляется так называемое ацетоновое дыхание . (Запах у ацетона приятный, ничего не скажешь, но когда у человека изо рта пахнет ацетоном, это означает сильную степень диабета, а в этом уже нет ничего хорошего.) [c.127]

    Так, взорвался резервуар, содержащий летучий углеводород. Резервуар, эксплуатируемый под азотным дыханием, на короткое время соединялся с атмосферой для измерения уровня вручную. Взрыв произошел при отключении азотного газгольдера на более длительное время, чем это было предусмотрено. [c.137]

    В 1971 г. в Сиракузах (Италия) произошел пожар в резервуарном парке нефтехимического предприятия, вызванный взрывом в резервуаре смеси ацетальдегида с воздухом. Ацетальдегид имеет температуру кипения 20 °С, концентрационные пределы воспламенения смеси его паров с воздухом составляют 4—53% (об.). Воздух попал в резервуар через дыхательный клапан при понижении уровня продукта и выходе из строя системы азотного дыхания. Пожар распространился на два резервуара, содержащие по 3,8 тыс. т жидкого аммиака, два резервуара с ацетальдегидом, емкостью по 500 каждый, пять резервуаров с акрилонитрилом емкостью по 1500 м и др. Пожар продолжался шесть суток, до тех пор, пока не сгорели полностью хранящиеся на складе продукты. Прекратить пожар сразу не удалось, так как вышла из строя арматура. Чтобы предотвратить интоксикацию людей ядовитыми продуктами, пришлось эвакуировать население нз зоны радиусом 3 км. На этом участке было прервано железнодорожное и морское сообщение. Поскольку загрязненная вода, использованная для охлаждения резервуаров, стекала в море, погибло большое ко.чиче-ство рыбы. [c.170]

    В отстойниках с течением времени могут протекать процессы десорбции растворенных в сточных водах газов и испарение плавающей на поверхности воды пленки ЛВЖ с насыщением взрывоопасными продуктами воздуха. Поэтому отстойники для сточных вод, содержащих растворенные газы н примеси ЛВЖ, необходимо проектировать герметичными с заполнением газового объема инертным газом. В большинстве случаев в качестве инертного газа используют азот. Для азотного дыхания отстойников и других емкостей, в которых возможно образование взрывоопасных смесей, предусматривают специальные системы (сети) с автоматическим поддержанием постоянного давления азота. При наличии такой [c.250]

    Проблемы дегазации и предварительной очистки сточных вод, т. е. отделение от воды растворенных газов и ЛВЖ, связано с усложнением технологических схем и дополнительными капитальными и эксплуатационными затратами. Кроме того, в некоторых процессах вследствие технических трудностей не удается достигнуть необходимой степени дегазации или очистки воды от примесей. Тогда в отстойники поступает неполностью дегазированная вода или вода с примесями ЛВЖ. В таких случаях создание в отстойниках и других аппаратах по обработке стоков азотного дыхания — единственный метод предотвращения аварийных ситуаций. [c.251]


    В производствах аммиака используют и получают в основном газообразные или легкоиспаряющиеся вещества. Они проникают в организм человека преимущественно через органы дыхания и быстро поглощаются, так как слизистая оболочка органов дыхания имеет достаточно большую поверхность. [c.18]

    Действие электрического тока на организм человека зависит от внешних условий (среды), состояния и особенностей организма. Наибольшую опасность представляет общее поражение электрическим током, так называемый электрический удар. В этом случае поражаются центральная нервная система и сердце человек теряет сознание, у него частично или полностью прекращается дыхание, нарушается сердечная деятельность. Местные поражения электрическим током вызывают ожоги, являющиеся результатом теплового действия электрической дуги. [c.29]

    Шланговый противогаз состоит из такой же маски, как и фильтрующий, шланга, по которому происходит всасывание или подача чистого воздуха для дыхания, и пояса, с помощью которого шланг крепится на работающем. В самовсасывающих противогазах чистый воздух поступает под маску вследствие подсоса, вызываемого дыханием рабочего. [c.119]

    Кислородные изолирующие приборы полностью изолируют органы дыхания работающего от окружающей среды и могут применяться при любой концентрации вредных веществ и значительном недостатке кислорода в воздухе. Принцип их действия таков кислород, необходимый для дыхания, подается под шлем-маску из специального баллончика, а выделяемые при дыхании двуокись углерода и пары воды поглощаются химическими веществами, помещенными в регенеративном патроне. На предприятиях применяют кислородные изолирующие приборы КИП-5, КИП-7, КИП-8 и РВЛ. [c.120]

    Для защиты органов дыхания обслуживающего персонала от вредных воздействий могут применяться фильтрующие и изолирующие противогазы. Фильтрующие противогазы следует использовать в тех случаях, когда они достаточно очищают вдыхаемый воздух, а в атмосфере содержится не менее 16—17% кислорода. Из-за малой надежности фильтрующих противогазов, а также вследствие того, что в загазованной атмосфере может находиться мало кислорода пользование такими противогазами следует ограничивать. [c.142]

    Как мы уже отмечали, превращения глюкозы в организме представляют собой в конечном счете ту же химическую реакцию, что и ее сгорание на воздухе. Ясное дело, никакого горения внутри организма нет. Иначе не только большая часть энергии бесполезно рассеялась бы в виде тепла, но и организм погиб бы от перегрева. Однако такое горение происходит фактически непрерывно внутри каждой клетки. Этот процесс представляет собой цепь по крайней мере 22 химических реакций или стадий. Он называется клеточным дыханием, (см. рисунок на с. 253) [c.254]

    Дыхание так же, как и все другие биохимические реакции в организме, осуществляется при помощи молекул, называемых ферментами. Ферменты — это катализаторы, т. е. вещества, способствующие повышению скорости химических реакций (более подробно они рассматриваются в гл. VII). Ферменты внутри нас действуют как специалисты узкого профиля. Они помогают образованию и разрыву химических связей, при этом каждый фермент подходит только для одной или узкого круга реакций так же, как ключ к одному, строго определенному замку. [c.254]

    Мы живем не только на Земле, но и в атмосфере. Воздух окружает нас так же, как вода - обитателей морей и океанов. И так же как земная кора и водоемы, атмосфера служит нам источником химических ресурсов и местом сброса отходов. Мы используем газы для дыхания, сжигания топлива и осуществления разнообразных технологических процессов. Человек, как и другие живые организмы и растения, выделяет в атмосферу некоторые газы, мелкие капли и пыль. Эти вещества, возможно, и не оказывают никакого воздействия на окружающую среду, а может быть, и разрушают ее - в некоторой ближайшей окрестности или даже повсеместно. [c.366]

    Для жизни растений непрерывно требуется диоксид углерода - побочный продукт дыхания животных. С помощью фотосинтеза в зеленых растениях диоксид углерода соединяется с водой, образуя в результате глюкозу и газообразный кислород (этот вопрос обсуждался в гл. IV). Таким образом, фотосинтез и дыхание уравновешивают друг друга - и концентрация кислорода в атмосфере остается постоянной (рис. VI.2), [c.372]

    При хранении нефти и нефтепродуктов в резервуарах наблюдаются потери от так называемых малых дыханий резервуаров. Малые дыхания протекают по следующей схеме. Днем пары в газовом пространстве резервуара нагреваются, при этом давление повышается. Когда давление паров превысит величину, на которую рассчитан дыхательный клапан, последний открывается и сбрасывает часть паров в атмосферу ( выдох ). Ночью, когда температура в газовом пространстве понижается, газы сжимаются, в резервуаре образуется вакуум, дыхательный клапан открывается и атмосферный воздух поступает в резервуар, заполняя его газовое пространство ( вдох ). Потери от малых дыханий резервуара могут быть определены по номограмме, изображенной на рис. 89. [c.189]


    ПЛОДОВ и овощей в течение длительного времени оказалось хранение их в регулируемой газовой среде (РГС), содержащей 2— 5% (об.) кислорода, 2—5% (об.) диоксида углерода и 90— 95% (об.) азота. В среде такого состава, который способствует понижению температуры в результате снижения интенсивности дыхания, резко замедляется скорость процессов жизнедеятельности [117]. [c.327]

    Емкости, промежуточные сосуды, напорные баки, мерники и подобные им технологические аппараты периодически наполняются жидкостями и опорожняются в процессе нормальной эксплуатации. При заполнении аппаратов с так называемым большим дыханием легковоспламеняющимися и горючими жидкостями находящаяся в них паровоздушная смесь вытесняется по дыхательной линии наружу, а при опорожнении в аппарат подсасывается воздух. Вытеснение паровоздушной смеси или подсос воздуха в аппараты с малым дыханием возможен при изменении температурных условий. [c.80]

    Твердый диоксид углерода испаряется при —78°С, не плавясь, так как его тройная точка лежит при р> 101 кПа (511 кПа, см. рис. 3.2()). Диоксид углерода тяжелее воздуха. 10%-ное содержание СО2 в воздухе смертельно (вызывает остановку дыхания). [c.360]

    Наземные резервуары большого объема при наполнении их жидкостью (большое дыхание) и при повышении температуры среды (малое дыхание) являются источниками выброса в атмосферу паров нефти и нефтепродуктов. Так, например, в летнее время при температуре 25 °С из бензиновых резервуаров с каждого кубического метра вытесняемой наружу через дыхательные клапаны паровоздушной смеси выбрасывается 1 кг паров бензина. Если выбрасываемые пары будут быстро рассеиваться, это может привести к образованию взрывоопасной концентрации на большой площади резервуарного парка. [c.170]

    Простейшие респираторы бесклапанного типа —это повязки из марли или ваты. Они легки, удобны, имеют малое сопротивление дыханию, но их защитная способность невелика, так как они не обеспечивают плотного прилегания фильтрующего материала к поверхности лица, в особенности около носа, и в этом месте подсасывается пыль. Их можно применять короткое время и при небольших пылевыделениях. [c.114]

    Кислородные изолирующие противогазы полностью изолируют органы дыхания работающего от окружающей среды, поэтому эти приборы могут применяться при любой концентрации вредных веществ и при значительной нехватке кислорода в воздухе. Принцип действия наиболее совершенного изолирующего кислородного противогаза КИП-8 (рис. 29) таков выделяемые при дыхании двуокись углерода и пары воды поглощаются [c.119]

    Таким образом осуществляется замкнутый процесс дыхания, полностью изолированный от внешней среды. [c.120]

Рис. 7-62. Филогенетическое древо возможной эволюции митохондрий, хлоропластов и их бактериальных предков. Полагают, что кислородное дыхание стало развиваться примерно 2 млрд. лет назад. Как видно из рисунка, такое дыхание, вероятно, независимо возникло в трех линиях фотосинтезирующих прокариот - у зеленых, пурпурных и синезеленых бактерий. По-видимому, какая-то форма аэробных пурпурных бактерий, утратившая способность к фотосинтезу, дала начало митохондриям, тогда как несколько различных синезеленых бактерий были предками хлоропластов. Детальный анализ нуклеотидных последовательностей показывает, что митохондрии скорее всего произошли от бактерий, напоминающих современные ризобактерии, агробактерии и риккетсии - три родственные группы, представители которых вступают в тесные Рис. 7-62. <a href="/info/510903">Филогенетическое древо</a> возможной <a href="/info/511065">эволюции митохондрий</a>, хлоропластов и их бактериальных предков. Полагают, что <a href="/info/231324">кислородное дыхание</a> стало развиваться примерно 2 млрд. лет назад. Как видно из рисунка, такое дыхание, вероятно, независимо возникло в трех линиях <a href="/info/1531938">фотосинтезирующих прокариот</a> - у зеленых, пурпурных и синезеленых бактерий. По-видимому, какая-то форма аэробных <a href="/info/38023">пурпурных бактерий</a>, утратившая способность к фотосинтезу, дала начало митохондриям, тогда как несколько различных синезеленых бактерий были предками хлоропластов. Детальный <a href="/info/1386918">анализ нуклеотидных последовательностей</a> показывает, что митохондрии скорее всего произошли от бактерий, напоминающих современные <a href="/info/759945">ризобактерии</a>, агробактерии и риккетсии - три <a href="/info/1035194">родственные группы</a>, представители <a href="/info/1519841">которых вступают</a> в тесные
    При развитии плодов и семян происходят значительные метаболические изменения. Так, дыхание плодов, очень интенсивное на первых этапах развития, снижается по мере их роста и кратковременно усиливается у многих сочных плодов в период созревания климактерический период). Основными метаболитами, потребляемыми плодами в процессах дыхания, являются сахара и органические кислоты. Их содержание в ходе развития плодов сильно меняется. Уже через несколько дней после опыления или обработки ауксином в плодах резко снижается концентрация сахаров. Во время фаз быстрого развития плодов и семян идет интенсивный синтез крахмала, гидролизуемого в период созревания. В плодах некоторых растений крахмал вовсе отсутствует. В разных плодах обнаруживаются также глюкуроновая кислота, сорбитол и др. Углеводы частично синтезируются в хлоропластах, которые присутствуют в незрелых плодах, однако в основном ассимиляты поступают в плоды из фотосинтезирующих листьев. [c.383]

    Дыхание, или биологическое окисление, основано на окислительно-восстановительных реакциях, идущих с образованием АТФ-универсального аккумулятора химической энергии. Энергия необходима микробной клетке для ее жизнедеятельности. При дыхании происходят процессы окисления и восстановления окисление — отдача донорами (молекулами или атомами) водорода или электронов восстановление — присоединение водорода или электронов к акцептору. Акцептором водорода или электронов может быть молекулярный кислород (такое дыхание называется аэробным) или нитрат, сульфат, фумарат (такое дыхание называется анаэробным — нитратным, сульфатным, фумаратным). Анаэробиоз (от феч. аег — воздух + bios — жизнь) — жизнедеятельность, протекающая при отсутствии свободного кислорода. Если донорами и акцепторами водорода являются органические соединения, то такой процесс называется брожением. При брожении происходит ферментативное расщеп- [c.46]

    До Ван Гельмонта единственным известным и изученным воздухоподобным веществом был сам воздух, который казался достаточно характерным и непохожим на другие вещества, чтобы древние греки посчитали его одним из элементов (гл, 1). Несомненно алхимики в своих опытах часто получали что-то подобное воздуху и пару , но эти вещества были почти неуловимы, их трудно было изучать и наблюдать и легко было не заметить. О том, что к этим веществам относились как к таинственным, говорят хотя бы их названия. Так, спирт в переводе с латинского означает дух , душа , дыхание . [c.30]

    Лавуазье, узнав об этом опыте, назвал газ Кавендиша водородом ( образующим воду ) и отметил, что водород горит, соединяясь с кислородом, и, следовательно, вода является соединением водорода и кислорода. Лавуазье также полагал, что пищевая субстанци и живая ткань представляют собой множество различных соедине ний углерода и водорода, поэтому при вдыхании воздуха кислоро/ расходуется на образование не только углекислого газа из углерода но и воды из водорода. Таким образом Лавуазье объяснил, куд расходуется та часть кислорода, которую он никак не мог учестг в своих первых опытах по изучению дыхания .  [c.49]

    Р. Бойль ставил и подлинно химические опыты и даже такие опыты, которые можно назвать биохимическими. Дело в том, что он интересовался не только физическими измерениями сжимаемого воздуха, его занимала также сущность горения и дыхания. И. оответствующие опыты, проведенные им и его сотрудниками и последователями, привели к важным химическим выводам. Современник Бойля Джон Мейоу заметил, что в воздухе содержится вещество, необходимое для горения и дыхания. См. Кривобокова С. С. Биологическое окисление (исторический очерк).— М. Наука, 1971, 168 с. [c.182]

    В конце 40-х годов мне пришлось разрабатывать холодильный костюм для горноспасателей, действующих при подземных пожарах. Главная трудность состояла в том, что вес охлаждающего вещества (льда, сухого льда, сжиженного аммиака) не должен был превышать 8 кг. А по расчетам требовалось не менее 20 кг. Задача считалась неразрешимой с физическими расч.етами не поспоришь... Но я уже знал надежное правило техническая система идеальна, когда системы нет, а функция выполняется. Горноспасатель обязательно имеет дыхательный аппарат (это 11 — 12кг ). Я предложил скафандр, выполняющий две функции — газовую и тепловую защиту. Скафандр работал на сжиженном воздухе сначала воздух испарялся и нагревался, поглощая тепло, потом шел на дыхание. Ненужным становился отдельный дыхательный прибор, запас холодильно-дыхательного вещества доходил до. 20, даже до 30 кг. В таком скафандре можно ремонтировать раскаленную мартеновскую печь .. [c.11]

    Оба полученных вещества (озон — сильный окислитель) вызывают слезоточение и затрудггение дыхания у человека, крайне ядовиты для растений и приводят к их гибели. Так, в декабре 1952 [c.267]

    При опорожнении хранилищ сжиженных взрывоопасных газов лринимают меры, исключающие попадание в них воздуха при снижении уровня жидкости. Для этого можно применять различные схемы. В таких схемах азот используют как для передавливания, так и для азотного дыхания , т. е. для заполнения хранилищ при опорожнении. [c.189]

    Благодаря высокой и селективной газопроницаемости пленки из силоксановых резин на тканевой подложке или из эластичных силоксановых блоксополимеров с жесткими блоками применяют все шире в медицине (оксигенаторы крови), в космической технике. Они используются в установках промышленного разделения газов, для изготовления искусственных жабер , обеспечивающих дыхание под водой за счет растворенного в ней кислорода. Применение таких пленок в виде окошек в контейнерах для хранения овощей и фруктов позволяет предохранять эти продукты от гниения и порчи в течение длительного времени. [c.498]

    Резервуар имеет штуцера для наполнения, вентиляционный штуцер, световой люк, люк для замера уровня и указатель уровня. В нижней части резервуара делают люк для обслуживания и спускной штуцер. Иногда заполняют и опорожняют резервуар через один нижний приемораздаточный патрубок. Вентиляционный штуцер служит для дыхания резервуара, т. е. входа и выхода воздуха при измерении уровня жидкости. При работе со взрыво- и пожароопасными жидкостями на веи- риляциониые штуцера последовательно устанавливают дыхательный клапан и огиепрегради-тель. Дыхательный клапан имеет две плоские тарелки, которые поднимаются как при избыточном давлении, так и ири вакууме в резервуаре. После выравнивания давления тарелка закрывается и разобщает пространство от внешней среды. Для защиты от примерзания поверхность тарелок покрывают фторопластовой плен- [c.115]

    Доставка автомобильных бензинов от нефтеперерабатывающих заводов к местам потребления связана со значительными потерями. Главной составной частью всех потерь бензинов являются потери вследствие испарения. Они имеют место при хранеции, сливе, наливе, перевозках, заправках машин, и даже в процессе применения бензин испаряется из топливных баков, карбюраторов и т. д. Потери от испарения происходят по следующим основным причинам механического вытеснения паров заливаемым бензином, термического расширения паровой и жидкой фаз, снижения атмосферного давления, насыщения (или донасыщения) парового пространства парами бензина, выдувания паров ветром через неплотности, газовый сифон и диффузии паров [2]. Относительное значение каждого из перечисленных видов потерь в общем балансе потерь различно и зависит от многих факторов, однако, как показали эксперименты, основные потери при хранении связаны с донасыщением парового пространства и термическим расширением паро-воздушной смеси при так нaзывaeм .Ix малых дыханиях , обусловленных суточным изменением температуры.  [c.333]

    Оригинально и увлекательно написана большая глава об особой роли углерода в химии. Традиционному изложению основ органической химии и начал биохимии предшествует рассмотрение уникальной способности углерода к образованию бесконечного множества устойчивых структур вместе с тем показано, что даже ближайшие к углероду элементы в периодической системе не обладают такими свойствами. Авторы интересно рассказывают о строенип и механизме действия ферментов. Но особенно увлекателен (хотя и не прост) материал об эволюции усвоения энергии живыми системами (от анаэробной ферментации к фотосинтезу и далее к кислородному дыханию). [c.7]

    При хранении и транспортировке топливо загрязняется вследствие большого и малого дыханий емкостей, при которых в емкости попадают аэрозоли, содержащие. механические элементы почв малого размера (так. называемый почвенный мел.козем). По этой же причине дизельное топливо загрязняется и в расходных баках дизелей, работающих в запыленных условиях на сельскохозяйственных, транспортных, землеройных, дорожных и -других машинах. [c.5]

    В непригодной для дыхания атмосфере работающие в противогазах лица (не менее трех человек) должны продвигаться в колонне по одному, зная направляющего и замыкающего, следить за nopядкo движения и состоянием каждого. Двигаться и располагаться нужно так, чтобы видеть и чувствовать друг друга, запоминая путь и поддерживая связь с идущим впереди предпоследний должен обязательно поддерживать связь с замыкающим. Идущий впереди для предупреждения падения в люки и т. п. должен простукивать пол ломо.м. [c.78]

    Гелий, так же как п аргон, ислоль-зуют для создания защитной атмосферы прп работе с веществами, pea гирующпмп с кислородом, азотом и другими газами. Смесь гелия с кислородом применяют для дыхания при подводных работах на большой глубине. Это связано с очень малой растворимостью Не в воде. Если же пользоваться воздухом, то при высоком давлёпии азот значительно растворяется в крови, что вызывает тяжелые последствия. [c.489]

    При небольших концентрациях сероводорода в воздухе он- действует прежде всего на слизистые оболочки глаз, вызывая боль, слезотечение, ощущение постороннего тела в глазу, светобоязнь. При более высоких концентрациях поражается центральная нервная система, появляется головокружение, тгеота, оглушенное состояние. При концентрациях выше 1000 мг/м в результате паралича дыхания мгновенно наступает смерть. Однако были случаи, когда, быстро удалив пострадавшего из загазованной зоны, удавалось, проводя искусственное дыхание и давая ему кислород, восстановить дыхание и спасти потерпевшего. Поэтому пострадавшему до прибытия срочно вызванного врача следует делать искусственное дыхание. Отправлять пострадавшего в здравпункт в таких случаях не следует, иначе может быть потеряно драгоценное время для его спасения. [c.91]

    Продолжительность защитного действия коробки противогаза зависит от концентрации газов и от физической нагрузки пользующегсюя противогазом. Очевидно, что чем выше концентрация вредных веществ, тем скорее поглощающее вещество коробкн противогаза исчерпает свои защитные свойства. При тяжелой физической работе дыхание становится более учащенным и глубоким, это также увеличивает воздухообмен и ускоряет прекращение защитного действия поглотителя. Так, для противогаза марки КД при концентрации паров сероводорода в воздухе 4600 мг/м защитное действие продолжается 240 мин, а при тяжелой физической нагрузке работающего в противогазе — может сократиться до 40 мин. [c.113]


Смотреть страницы где упоминается термин Что такое дыхание: [c.342]    [c.187]    [c.126]    [c.187]    [c.173]    [c.47]    [c.106]    [c.114]   
Смотреть главы в:

Биология Том1 Изд3 -> Что такое дыхание




ПОИСК





Смотрите так же термины и статьи:

Таками

Таки Так



© 2025 chem21.info Реклама на сайте