Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Агрессивные среды сплавы

    Таким образом, ускоряющее действие излучения на коррозионные процессы связано главным образом с влиянием деструктурирующего эффекта, ухудшающего защитные свойства окисных пленок в агрессивных средах (А1, 2г, Т ), и деполяризующим действием продуктов радиолиза (Ре, Си). Наиболее устойчивыми к влиянию излучения из технических сплавов являются хромоникелевые стали. [c.372]


    Применение электрохимической защиты возможно приложением тока извне или путем присоединения к конструкции, подверженной коррозионному растрескиванию, другого металла с более отрицательным электродным потенциалом — протектора (см. гл. XIX). Эффективное действие этого метода защиты в отношении предотвращения или уменьшения коррозионного растрескивания зависит от природы металлов и сплавов, характера агрессивной среды, применяемой плотности тока и других фак- [c.116]

    Одним из методов получения химически стойких сплавов, как известно, является легирование неустойчивого или малоустойчивого металла атомами более устойчивого металла, например легирование меди золотом или железа никелем и т. п. Рассмотрим процесс коррозии двойного сплава, являющегося гомогенным твердым раствором, в котором один из компонентов вполне стоек в данной агрессивной среде, а другой, наоборот, растворяется в ней. [c.125]

    Из сплавов на основе алюмииия, обладающих хорошими литейными свойствами и высокой коррозионной стойкостью во многих агрессивных средах, наибольшее распространение нашла система А1 — 51 (силумины). Коррозионная стойкость силуминов объясняется образованием на их поверхности комбинированной пленки, состоящей из Л Оз и ЗЮг- Силумины, содержащие 4,5—13% 51, применяются в окислительных средах. Из силуминов могут изготовляться самые сложные отливки. [c.272]

    Высоколегированные коррозионно-стойкие, жаростойкие и жаропрочные стали и сплавы (ГОСТ 5632—72) содержат более 10 % легирующих компонентов. Этн стали поставляют в виде листов, полос и прутков (ГОСТ 5949—75), труб (ГОСТ 10498—82) отливки из высоколегированной стали должны соответствовать ГОСТ 2176—77. Изготовляют элементы машин и аппаратов, работающих под повышенным давлением в интервале температур от —257 до +600 °С в агрессивных средах рекомендации по применению сталей и сплавов указаны в приложении к ГОСТ 5632—72. [c.99]

    Цветные металлы и сплавы применяют в химическом машиностроении для изготовления элементов машин и аппаратов, контактирующих с агрессивными средами и работающих при низких температурах. [c.100]

    Пластинчатые теплообменники предназначены для работы в агрессивных средах с повышенным содержанием твердых частиц. В таком теплообменнике монтируется до 180 двухсторонних пластин. Пластины изготовляют из различных конструкционных материалов (тантал, медно-никелевый сплав, монель, нержавеющая сталь различных составов, алюминий). Верхняя рама теплообменника имеет разъемные секции, что позволяет быстро заменять пластины. В зависимости от площади пластин теплообменники имеют различную производительность 500—5000 и 3 тыс.— 15 тыс. л/ч. Площадь пластин составляет 0,915, 0,54 и 0,292 м [109]. Для крепления пластин средней величины применяют центральную опору, в случае пластин с большой поверхностью — двойную опору. [c.118]


    Никель-молибденовые сплавы типа хастеллоя, содержащие небольшие количества железа, являются исключительно стойкими в агрессивных средах восстановительного характера. Они используются [c.213]

    К другим высокостойким в агрессивных средах сплавам никеля относятся никельмолибденовые (Н70М26Л, Н65М30Л, Н60М35Л), пригодные для отливки арматуры и отличающиеся высокой коррозионной стойкостью в слабых (до 5%) растворах соляной кислоты и 65—78%-ных растворах серной кислоты. [c.16]

    Таким образом, ориентировочная оценка коррозионной стойкости в ряде агрессивных сред сплавов 75НМ и ХН65МВ может быть установлена по табл. 12. [c.170]

    Марки металлов и сплавов согласно ГОСТам, а также рекомендации 1ю выбору их для иаяной, сварной и литой аипаратуры в соответствии с рабочими условиями при ее эксплуатации (давлением, температурой) и для различных агрессивных сред приведены в [4]. [c.64]

    С точки зрения коррозионной стойкости, оптимальное содержание Сг в стали составляет 12-14%. Такой уровень легирования Сг обеспечивае г легкую пассивацию поверхносги во многих агрессивных средах, связанных с производством нефтехимических продуктов. При повышении содержания хрома более 12% коррозионная стойкость практически не увеличивается. Вместе с тем в этом случае имеет место проявление склонности стали к охрупчиванию и снижению прочности в связи с формированием в структуре значительного количества ферритной составляющей. 13-14 %-ные хромистые стали с частичным у-а (М)- превращением относят х мартенситно - феррит-ным. Эти стали известны еще под названием полуферритных. По структуре мартенситно-ферритные стали соответствуют сплавам Ре - Сг. Количество 6- феррита в сталях повышается с увеличением содержания Сг и снижением концентрации углерода. С введением углерода границы существования области у - твердых растворов сдвигаются в сторону более высокого содержания Сг. У 13% - ных хромистых сгалей С < 0,25% термокинетическая диаграмма распада аустенита состоит из двух областей превращения. При температурах выше 600 °С в случае достаточно низкой скорости охлаждения возможно образование ферритной составляющей структуры. Ниже 400 °С при более быстром охлаждении наблюдается бездиффузионное превращение аустенита в мартенсит. Количество образовавшегося мартенсита в ка-асдом из указанных температурных ингервалов зависит, главным образом, от скорости охлаждения и содержания углерода в стали. [c.234]

    Трубы, изготовленные методом горячего прессования из сплава Инколой-802 для двух змеевиков высокотемпературной печи типа SRT конструкции фирмы Луммус (США), применены на этиленовой установке нефтехимического завода в Техасе [1, 2]. Эти трубы примерно в 2—6 раз более долговечны по сравнению с центробежнолитыми трубами нз стали типа НК-40 в аналогичных рабочих условиях (высокая температура, одинаковые теплонапряженностн поверхностей нагрева, воздействие агрессивной среды) при одинаковых напряжениях от действия различных сил. После четырех лет эксплуатации на этом заводе в семи пз девяти печей была произведена полная замена труб печных змеевиков трубами из сплава Инколой-802 . [c.36]

    Разрушенне металла, вызываемое одновременным воздействием агрессивной среды и переменных растягивающих напряжений, называется коррозионной усталостью. В химической иро-мышленности передки случаи такого разрушения деталей аппаратов и машин. Разрушение вследствие усталости обычно сопровождается образованием меж- и транскристаллитных трещин, развитие которых идет главшэш образом в период приложения растягивающих напряжений, В условиях переменных напряжений разрушение металлов и сплавов происходит при напряжениях, меньших чем напряжения, необходимые для нозникновения коррозионного растрескивания при растягивающих нагрузках. [c.106]

    При легировании коррозионно-неустойчивого металла атомами металла устойчивого, в данной агрессивной среде, при условии, что оба компонента дают твердый раствор, и при отсутствии в сплаве заметной диффузии, полученный сплав приобретает химическую стойкость только при определенных соотношениях компонентов в сплаве. Эти определенные соотношения для таких двухкомпонентных твердых растворов вытекают нз так называемого правила границ устойчивости твердых раст1 оров, сформулированного Тамманом и выражающего зависимость между концентрацией твердого раствора и его коррозионной устойчивостью (так называемое правило п/8). [c.125]

    В. тапной главе рассматриваются вопросы химической коррозии металлов. Процесс разрушения металлов и сплавов вследствие взапмоде11ствия их с внешней средой, не сопровождающийся возникновением электрических токов, называют химическо коррозией. Характерной особенностью процесса химической коррозии является, в отличие от электрохимической коррозии, образование продуктов коррозшт непосредственно в месте взаимодействия металла с агрессивной средой. Химическая коррозия подчиняется основным законам химической кинетики гетерогенных реакций и наблюдается ири действии на металл сухих газов или жидких неэлектролитов. [c.131]


    КОРРОЗИЯ ЖЕЛЕЗА И ЖЕЛЕЗОУП1ЕРОДИСТЫХ СПЛАВОВ В АГРЕССИВНЫХ СРЕДАХ [c.200]

    Ко цюзия железа и железоуглеродистых сплавов в агрессивных средах [c.201]

    Таким образом, следует считать, что минимальное содержание хрома в малоуглеродистых хромистых сталях, обладающих коррозионной с. тойкостью в агрессивных средах, должно быть ие менее 13—15%. Коррозионная стойкость хромистых сталей в значительной степени зависит от содержания в них углерода. Так, в сталях, содержащих 13—15% Сг, наблюдается резкое разблагораживание потенциала при содержании углерода 0,3—0,4%-Чем больше содержание углерода в сплаве, тем больше хрома расходуется на образование карбидов и тем больше обедняется твердый раствор хромом. Сталь 1X13 при прочих равных условиях имеет более высокую коррозионную стойкость, чем сталь 2X13, а последняя обладает повышенной коррозионной стойкостью по сравнению со сталью 3X13 и т. д. [c.214]

    В неокислительных агрессивных средах защитная пленка на поверхности хромистых сталей не образуется. Этим объясняется то, что в соляной и разбавленных растворах серной кислоты эти стали неустойчивы. В отличие от азотной кислоты, в иеокислительных кислотах при унеличении процентного содержания хрома в сплаве его устойчивость не только не увеличивается, но наблюдается даже ускорение коррозии. [c.215]

    Титаи и сплавы на его основе сочетают в себе весьма ценные физические и механические свойства с исключительно высокой коррозионной стойкостью в некоторых сильно агрессивных средах, которые в ряде случаев прегюсходмт стойкость высоколегированных кислотостойких сталей. [c.277]

    Тантал — конструкционный металл с наиболее высокой плотностью, равной 16,6 Мг1м . Из всех известных металлов и сплавов тантал обладает наиболее высокой коррозионной стойкостью, несмотря на электроотрицательный нормальный электродный потенциал. Коррозионная стойкость тантала объясняется наличием на его поверхности стойкой окисной пленки ТзаОд, обладающей хорошим сцеплением, непроницаемостью и защищающей металл от действия большинства агрессивных сред и при высоких температурах. [c.293]

    В первом случае после действия агрессивной среды взвешивают образцы, обрав все продукты коррозии во-втором — необходимо все прод укты коррозии удалить. Если не удается собрать все продукты коррозии или они удалены не полностью, образец протирают до полного удаления продуктов коррозии. Если их при этом также не удается удалить, то прибегают к травлению иоверхности металла такими реагентами, которые растворяют только продукты коррозии, но ие металл. В частности, с поверхности алюминия продукты коррозии можно удалять 5%- или 6%-ным раствором азотной кислоты. Для стали можно рекомендовать 10%-иый раствор винно- или лимоннокислого аммония, нейтрализоваииого аммиаком (температура раствора 25— 100° С) для свинца, цинка и оцинкованной стали — насыщенный раствор уксуснокислого аммония, нейтрализованный аммиаком для меди и медных сплавов—5%-ный раствор серной кислоты, имеющий температуру 10—20 С. [c.337]

    Графит — это единственный конструкционный неметаллический материал, обладающий высокой теплопроводностью при достаточно высокой инертности в большинстве агрессивных сред, термической стойкостью при резких перепадах температуры, низким омическим сопротивлением, а также хорошими механическими сво11ствами. Теплопроводность искусственного графита выше теплопроводности многих металлов и сплавов, в частности свипца и хромоннкелевых сталей, в 3—5 раз. По этой причине примепеиие графита особенно эффективно для изготовления из пего тенлообмепной аппаратуры, предназначенной для эксплуатации в условиях воздействия таких агрессивных сред, как серная кислота определенных концентраций, соляная и плавико- [c.449]

    В качестве материалов для конструкционных элементов, соприкасающихся с агрессивными средами, или в качестве коррозионностойких покрытий, наносимых на поверхность этих элементов, пшроко используют сплавы на основе никеля (типа хастеллоя). Эти сплавы выпускает фирма Union arbide orp. [c.213]

    Теории электрохимической коррозии н пасснвиостн металлов лежат в основе методов их защиты от коррозии. К числу их относятся методы, направленные на снижение тока коррозии за счет повышения поляризации коррозионных процессов. Например, повышение водородного перенапряжения введением в коррозионную среду специальных веществ — ингибиторов — резко снижает растворение металла при коррозии с водородной деполяризацией. Предварительное удаление кислорода из агрессивной среды способствует снижению коррозионного тока. Широкое распространение получило нанесение защитных покрытий па поверхность металла металлических, лакокрасочных, полимерных, пленок из труднорастворимых соединений металлов (оксиды, фосфаты) и т. п. Высокой коррозионной устойчивостью обладают металлические сплавы (например, нержавеющие стали), поверхность которых находится в пассивном состоянии. Существуют электрические методы защиты металлов от коррозии, связанные с применением поляризующего тока. Металлу задается потенциал, при котором процесс его растворения исключается или ослабляется. Например, защищаемый металл поляризуется катодно, а анодом служит дополнительный кусок металла. Электрические методы применяются при защите крупных стационарных сооружений. [c.520]

    Использование олова и свинца в технике. Олово и свинец применяют с глубокой др-евиости. Особую роль в истории материальной культуры сыграла бронза—сплав олова с медью. В современной технике олово в основном используют для лужения, т. е. для покрытия им других металлов. Листовое железо, покрытое оловом, называют белой жестью. Олово по сравнению с железом более коррозионно-стойко, и при повреждении оловянного покрытия на жести оно может стать катодом (см. гл. XX, 12). В силу этого белая жесть сохраняет устойчивость к химическому воздействию воздуха, воды и других агрессивных сред только при условии целостности покрытия обнажившееся железо становится анодом гальванической пары железо — олово и подвергается коррозии более интенсивно, чем совсем не защищенное. [c.344]


Смотреть страницы где упоминается термин Агрессивные среды сплавы: [c.479]    [c.695]    [c.14]    [c.19]    [c.28]    [c.487]    [c.16]    [c.17]    [c.99]    [c.81]    [c.129]    [c.129]    [c.130]    [c.163]    [c.205]    [c.246]    [c.257]    [c.259]    [c.276]    [c.277]    [c.806]    [c.806]   
Коррозионная стойкость материалов (1975) -- [ c.111 , c.112 ]

Коррозионная стойкость материалов Издание 2 (1975) -- [ c.111 , c.112 ]

Коррозионная стойкость материалов в агрессивных средах химических производств Издание 2 (1975) -- [ c.111 , c.112 ]




ПОИСК





Смотрите так же термины и статьи:

Агрессивность среды

Агрессивные сплавов



© 2025 chem21.info Реклама на сайте