Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Агрессивные среды никель и сплавы

    Никель-хромовые сплавы известны как жаростойкие материалы. Одновременно они обладают коррозионной стойкостью и в агрессивных средах. Эти сплавы так же как и нержавеющие стали устойчивы в окислительных средах, например, в азотной кислоте. [c.210]

    Кроме указанных сплавов, довольно большое распространение получили сплавы никеля с молибденом, хромом и кремнием, обладающие высокой коррозионной стойкостью в минеральных и органических кислотах, солях и газовых агрессивных средах. Эти сплавы имеют также высокую механическую прочность. [c.185]


    Никелевые стали. Никель образует с железом непрерывный ряд твердых р-ров и расширяет температурный интервал существования аустенита. Уже малые добавки никеля (до 4—5%) значительно увеличивают прокаливаемость стали и повышают ее коррозионную устойчивость в агрессивных средах. Высоконикелевые сплавы обладают особыми физич. свойствами. Сплав Ре с 36% N1 и 0,15—0,25% С (инвар) имеет минимальный коэфф. линейного расширения и практически пе расширяется в интервале темп-р от — 100 до + 1С0°. Инвар широко применяется в приборостроении для изготовления эталонов, деталей часовых механизмов, барографов, альтиметров и прочих приборов, к-рые с изменением темп-ры должны сохранять свои размеры. Сплав Ге с 46% N1 и ок. 0,15%, С имеет такой же коэфф. линейного расширения, как у платины и стекла он наз. платинитом и ирименяется вместо платины для электродов лампочек накаливания. [c.14]

    Стойкость металлов к коррозии различна. Коррозионному разрушению легко подвергаются, например, углеродистая сталь, чугун, магниевые сплавы. Лучше сопротивляются воздействию агрессивной среды никель, хром и их сплавы, медь, бронза и латунь, а также алюминиевые сплавы и нержавеющие стали. Способность металлов сопротивляться коррозионному воздействию внешней среды называют коррозионной стойкостью. Различают два типа коррозии металлов и сплавов химическую и электрохимическую. [c.5]

    ВИЛЬНО выполненная защита менее благородного металла путем окраски шш другим способом. В агрессивных средах никель и некоторые типы никелевых сплавов могут быть несовместимы и друг с другом. [c.147]

    В большинстве агрессивных сред никель в паре с другими металлами и сплавами ведет себя так же, как в морской воде (табл. 18 на стр. 445). [c.239]

    Одним из методов получения химически стойких сплавов, как известно, является легирование неустойчивого или малоустойчивого металла атомами более устойчивого металла, например легирование меди золотом или железа никелем и т. п. Рассмотрим процесс коррозии двойного сплава, являющегося гомогенным твердым раствором, в котором один из компонентов вполне стоек в данной агрессивной среде, а другой, наоборот, растворяется в ней. [c.125]

    Никель-молибденовые сплавы типа хастеллоя, содержащие небольшие количества железа, являются исключительно стойкими в агрессивных средах восстановительного характера. Они используются [c.213]


    Межкристаллитной коррозии могут подвергаться и некоторые сплавы никеля с молибденом и хромом — инконель и ха-стеллой. Эти сплавы используют в химической промышленности для изготовления деталей аппаратуры, работающих в особо агрессивных средах (кипящие концентрированные растворы кислот и щелочей). Склонность таких сплавов к межкристаллитной коррозии, как и в рассмотренных выше случаях, устраняется при помощи соответствующей термообработки. [c.448]

    Степень сенсибилизации для данной температуры и времени сильно зависит от содержания в сплаве углерода. Нержавеющая сталь 18-8, содержащая 0,1 % С или более, может быть заметно сенсибилизирована при нагревании в течение 5 мин при 600 °С. В то же время аналогичная термическая обработка сходной стали, содержащей 0,06 % С, оказывает меньшее воздействие, а при содержании углерода 0,03 % сталь не подвергается заметным разрушениям при выдержке в умеренно агрессивных средах. Чем выше содержание никеля в сплаве, тем меньше времени требуется для сенсибилизации при данной температуре. Легирование сталей молибденом увеличивает это время [13]. [c.304]

    Основными достоинствами сплавов никеля являются стойкость во многих агрессивных средах и способность сохранять прочность при высоких температурах, поэтому их применяют в тех случаях, когда требуется большая коррозионная стойкость в сочетании с высокими механическими свойствами при высокой температуре или с жаростойкостью. [c.33]

    Наибольшее практическое значение имеют электрохимические покрытия никелем и железом и в меньшей степени кобальтом. Никелирование — один из самых старых и распространенных видов защитно-декоративных покрытий, одновременно выполняющего функцию защиты от коррозии и декоративной отделки. Никелирование применяется как самостоятельное покрытие для меди и ее сплавов, а также в составе многослойных покрытий медь — никель — хром для стали. Никелирование относится к катодным покрытиям, так как никель более благородный металл, чем железо, и в атмосферных условиях и некоторых агрессивных средах может надежно защищать от коррозии только тогда, когда покрытие имеет достаточную толщину (40— 50 мкм) и беспористое. Поэтому с целью снижения пористости и экономии никеля его осаждают обычно на подслой меди толщиной 25—30 мкм. Для повышения защитной способности рекомендуется также способ никелирования в 2—3 слоя, основанный на различной электрохимической активности слоев никеля, содержащих и не содержащих серу (см. стр. 273). [c.306]

    Во втором издании (первое — в 1980 г.) рассмотрены коррозионно-стойкие стали, а также сплавы на основе железа и никеля, применяемые для службы в агрессивных средах. Описаны их структура, механические и физические свойства в широком диапазоне температур. Приведена соответствующая нормативно-техническая документация. Изложены механизмы различных видов коррозии. Показана роль структурных факторов, легирующих и примесных элементов в формировании свойств коррозионно-стойких сталей и сплавов. [c.320]

    Материал катода должен быть устойчивым при высоких плотностях катодного тока (5—500 А/м ) и не подвергаться коррозии в рабочей среде в периоды выключения тока. В зависимости от агрессивности среды применяют катоды из кремнистого чугуна, молибдена, сплавов титана, из нержавеющих и углеродистых сталей, из никеля. Расположение катодов должно обеспечивать наиболее равномерное распределение тока на защищаемой поверхности. Разработано несколько вариантов конструкций узлов катода применительно к конкретным изделиям. [c.145]

    Хороший выход адипиновой кислоты получен при карбонилировании тиофена в присутствии карбонила никеля или гидроокиси никеля и галогена при температуре 280—320 °С и давлении окиси углерода 29,4—31,4 МПа [116]. Учитывая высокую агрессивность среды, для проведения такой реакции предложено использовать реакторы, футерованные серебром, платиной, медью или изготовленные из сплава, содержащего никель, железо, молибден, хром, и футерованные кислотоупорным материалом [117]. [c.96]

    Из суспензии можно получать покрытия на металлах и других материалах, способных выдержать нагревание до 370 °С. Эти покрытия могут применяться как антифрикционные, антиадгезионные, антикоррозионные (для защиты от атмосферной коррозии, но не от агрессивных сред), электроизоляционные. Покрывать можно все металлы (сталь, никель, хром, кадмий, серебро, алюминий), кроме меди и медных сплавов, [c.145]

    Цветные металлы и их сплавы. В химической промышленности помимо стали и чугуна применяют алюминий, медь, титан, тантал, никель, свинец, а также сплавы на их основе — латуни, бронзы. Химическая стойкость цветных металлов к воздействию агрессивных сред зависит от их чистоты. Примеси других металлов значительно снижают химическую сопротивляемость цветных металлов, но повышают их механическую прочность. [c.22]

    Одной из важнейших причин, ограничивающих применение высоких и сверхвысоких температур в химической технике, яв-ляется трудность подбора конструктивных материалов, устойчивых при этих температурах и одновременно к действию различных химических реагентов. Обычные углеродистые стали легко деформируются уже при температурах выше 00 °С, а пластмассы даже при температурах ниже 250 °С. Жаропрочные стали устойчивы при температурах до 700°С. Специальные сплавы железа с никелем, хромом, молибденом, кобальтом, титаном и другими тугоплавкими металлами, применяемые в химической промышленности, устойчивы до 800—900 °С. Для осуществления процессов при температурах выше 900—1000 °С в металлургии, в стекловарении, в производстве цемента, карбидов и многих других применяют неметаллические огнеупорные материалы (см. гл. XV). Наиболее распространенные огнеупоры (шамот, динас и другие) применимы для футеровки аппаратов, кладки печей, топок и т. п. при температурах не более 1400—1600 °С. Применение огнеупоров ограничено также их коррозией при действии расплавленных м-е-таллов и шлаков. При температурах до 2000 °С в основной среде используются магнезитовые огнеупоры. Графитовые изделия стойки в восстановительной среде при температурах до 3000 °С. Отсутствие доступных конструктивных материалов, стойких в различных агрессивных средах при температурах выше 1600—2000°С, является основным препятствием для осуществления многих эндотермических высокотемпературных процессов. [c.146]


    Для никеля характерно благоприятное сочетание свойств высокой коррозионной стойкости во многих агрессивных средах, высоких механических свойств, хорошей обрабатываемости в горячем и холодном состоянии. Никель является основой коррозионностойких, жаростойких и жаропрочных сплавов. Никель обладает способностью растворять в большом количестве многие элементы, такие как хром, молибден, железо, медь, кремний. Наиболее важные легирующ,ие элементы в коррозионностойких никелевых сплавах — хром, молибден, медь. Коррозионная стойкость одних никелевых сплавов связана с пассивностью, а других — с тем, что они имеют достаточно высокий равновесный потенциал и не замещают водород в кислых средах. Этим объясняется большое число сред, в которых никелевые сплавы могут с успехом использоваться кислоты, соли и щелочи (как с окислительным, так и с неокислительным характером), морская и пресная вода, а также атмосфера. [c.167]

    В сплавах никеля с 30—50 % Сг в зависимости от конкретного химического состава (содержание хрома, дополнительных легирующих элементов и примесей), режима термообработки и агрессивности среды может развиваться либо межкристаллитная, либо структурно-избирательная коррозия. Вид коррозии определяется типом, морфологией и характером выделения вторичных фаз, что зависит от температурно-временных условий их образования [3.4, 3.8]. [c.177]

    Питтинговая коррозия никеля и никелевых сплавов возникает при нарушении пассивности в отдельных точках поверхности, экспонируемой в агрессивной среде. В таких точках происходит анодное растворение, в то время как большая часть поверхности остается пассивной. Питтинговая коррозия на никеле развивается преимущественно вблизи структурных дефектов, например границ зерен, а также на повреждениях поверхности, таких как царапины. Уменьшить вероятность питтингообразования на повреждениях поверхности можно с помощью электрополирования, но к структурным дефектам это относится в меньшей степени. [c.180]

    Требования к коррозионной стойкости металлических конструкционных сплавов, предъявляемые современной техникой, становятся все более высокими. Появляются новые, особо агрессивные среды, повышаются температуры, давления и механические нагрузки, при которых работают ответственные металлоконструкции. Именно поэтому в последнее время при широком использовании коррозионностойких сталей и сплавов на основе никеля и титана возрастает практическое применение более редких металлов — циркония, молибдена, ниобия, тантала, вольфрама, кобальта и других металлов и сплавов на их основе. [c.6]

    Наряду с высокой коррозионной стойкостью в агрессивных средах никелевые сплавы имеют ряд других особенностей, к которым относятся высокая пластичность от отрицательных температур до 1200 °С, в 1,5—2 раза более высокие значения прочностных свойств, твердости и электросопротивления, чем у стали 12Х18Н10Т, и в 1,5—2 раза более низкие значения коэффициента линейного расширения (N1—Мо-сплавы) и теплопроводности, чем у широко распространенных коррозионностойких сплавов на основе железа [3.1 ]. В табл. 3.2 приведены механические свойства никеля и его сплавов при 20 °С. Сплавы немагнитны. Сплавы обладают способностью к деформации в горячем и холодном состоянии, обрабатываются механическими способами и свариваются. [c.169]

    В качестве материалов для конструкционных элементов, соприкасающихся с агрессивными средами, или в качестве коррозионностойких покрытий, наносимых на поверхность этих элементов, пшроко используют сплавы на основе никеля (типа хастеллоя). Эти сплавы выпускает фирма Union arbide orp. [c.213]

    В усовершенствованном в последующие годы процессе катализатор представляет собой раствор хлористого алюминия р треххлористой сурьме, также активированный безводным хлористым водородом (процесс бутамер). Для осуществления процесса в жидкой фазе применяется давление порядка 20 ат. При переработке фракций н-пептаиа и тяжелее требуется циркуляция через рсакцион [ую зону небольших объемов водорода с целью подавления побочных реакций диспропорциоиирования — образования продуктов более легких и более тяжелых, чем сырье. Реактор изомеризации углеводородов в присутствии хлористого алюминия представляет собой мешалку, имеющую покрытие из никеля или никелевого сплава . Опыт эксплуатации промышленных установок показал, что решающее значение имеет тщательный контроль за содержанием влаги в сырье, которое не должно превышать 0,001%. Помимо хлористоводородной коррозии наблюдается воздействие агрессивной среды, образуемой хлористым алюминием с небольшими примесями олефинов и сернистых соединений сырья. [c.257]

    Никель имеет хорошие механические свойства и проявляет высокую коррозионную стойкость во многих агрессивных средах при достаточно высоких температурах. Однако никель — дорогой материал, поэтому в ап-паратостроении его используют очень редко. Широкое применение находят- сплавы никеля, основные достоинства которых — стойкость во многих агрессивт,1х средах и способность сохранять прочность при высоких температурах. Их применяют в тех случаях, когда требуется большая коррозионная стойкость материала в сочетании с его высокими механическими свойствами при высокой температуре или в сочетании с жаростойкостью. [c.16]

    Некоторые из цветных металлов обладают устойчивостью к действию ряда агрессивных сред. Поэтому при изготовлении аппаратуры для промышленности органических полупродуктов и красителей наряду со сталью, чугуном и легированными металлами и сплавами применяют некоторые цветные металлы. Наибольшее применение имеют алюминий и никел)). [c.86]

    Основное преимущество никельхромовых сплавов ( 20 % Сг) состоит в их высокой коррозионной стойкости в растворах азотной кислоты в присутствии фтор-иона по сравнению со сталью 12Х18Н10Т [3.1 ] и высокой жаростойкости при температурах до 1100 °С. Сплавы никеля с 20 % Сг являются основой ряда жаростойких и жаропрочных сплавов. Силав ХН78Т наряду с высокой жаростойкостью характеризуется повышенной стойкостью в таких агрессивных средах, как хлор, хлористый водород, фтористый водород (до 500 °С). [c.167]

    В концентрированной серной кислоте в качестве материала катода используют также кремнистый чугун — ферросилид С-15 [11]. Испытания в течение 500 ч при поляризации катодным током плотностью I—100 А/м показали высокую коррозионную устойчивость такого катода. В серной кислоте находят применение катоды из молибдена [12], стали ЭИ-943 [13, 14], свинца [15], тантала [16] сплавы Т1 — Р1, Т] — Та, Т1 — ЫЬ можно использовать в качестве катодного материала в различных агрессивных средах [17]. В аммиачных растворах используют аустепитную хромоникелевую сталь [18], сплав хастеллой [19], в щелочной среде — никель [20], углеродистую сталь [21]. [c.72]

    В настоящее время разработано большое количество различных по составу и свойствам сплавов на основе титана. Эти сплавы отличаются высокой прочностью и хорошей коррозионной стойкостью во многих агрессивных средах. Особенно большое применение титановые сплавы получили в морской технике. В США их широко применяют для обшивки подводных лодок и некоторых кораблей. Многие детали, изготовленные из сплавов титана, работают в условиях гидроэрозии. Поэтому изучение эрозионной стойкости титановых сплавов представляет большой практический интерес. Однако исследований, посвященных этому вопросу, проведено очень мало. В работе [2] указано, что некоторые нз титановых сплавов в процессе микроударного воздействия подвержены внезапному разрушению. Другие авторы характеризуют титановые сплавы как весьма стойкие в условиях кавитации. Некоторые иностранные фи мы ( Интернейшенл никель компани ) также отмечают хорошую гидроэрозионную стойкость титановых сплавов. [c.250]


Смотреть страницы где упоминается термин Агрессивные среды никель и сплавы: [c.16]    [c.17]    [c.129]    [c.205]    [c.257]    [c.119]    [c.38]    [c.13]    [c.123]    [c.154]    [c.73]    [c.92]    [c.402]    [c.44]    [c.306]    [c.683]    [c.686]    [c.694]    [c.793]   
Коррозионная стойкость материалов Издание 2 (1975) -- [ c.116 ]

Коррозионная стойкость материалов в агрессивных средах химических производств Издание 2 (1975) -- [ c.116 ]




ПОИСК





Смотрите так же термины и статьи:

Агрессивность среды

Агрессивные сплавов

Сплавы никеля

Сплавы никеля Jt И h I Сплав



© 2024 chem21.info Реклама на сайте