Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Агрессивные сплавов

    Коррозионные свойства. Углеводородная часть современных нефтяных авиационных топлив практически не вызывает коррозии металлов и сплавов. Коррозионная агрессивность обусловливается главным образом присутствием в топливе таких веществ, как сера, сернистые соединения, органические кислоты, вода, азотистые соединения и др. Коррозионная агрессивность топлива зависит от его стабильности. Малостабильные топлива, как правило, более коррозионно активны. Коррозионные свойства оцениваются по следующим показателям испытанию на медной пластинке, количеству серы и сернистых соединений в топливе, органической кислотности. [c.31]


    Цветные металлы и сплавы. Цветные металлы — свинец, медь, алюминий, никель — и их силавы применяют для изготовления сварной, паяной и литой аппаратуры, работающей в условиях средней и повышенной агрессивности. [c.64]

    Коррозионная активность сернистых соединений зависит от их строения. Наиболее агрессивны сероводород, сера и меркаптаны. Сероводород корродирует цинк, железо, медь, латунь и алюминий. Сера, если она имеется в свободном состоянии в топливе, почти мгновенно взаимодействует с медью и ее сплавами, образуя сульфиды, вследствие чего наряду с коррозией металла, приводящей к потере его массы, наблюдается образование отложений на металле. Коррозия металлов меркаптанами определяется их концентрацией в топливе и строением. Ароматические меркаптаны более коррозионно-агрессивны, чем алифатические, при этом бициклические меркаптаны агрессивнее моноциклических. [c.104]

    Карбоновые кислоты способны корродировать многие металлы и сплавы сталь, свинец, цинк, олово, медь. Наибольшей коррозионной агрессивностью обладают низшие кислоты жирного ряда. С увеличением молекулярного веса кислот коррозионная активность их падает. [c.26]

    Автомобильные бензины при транспортировке, хранении и применении соприкасаются с самыми различными металлами. Под действием топлива сталь трубопроводов и резервуаров, медь, латунь и другие сплавы топливных систем автомобилей подвергаются коррозионному разрушению. В настоящее время установлено, что углеводороды, входящие в состав бензинов, не оказывают коррозионного воздействия на металлы и сплавы. Коррозионная агрессивность бензинов обусловливается содержащимися в них неуглеводородными примесями, и в первую очередь сернистыми и кислородными соединениями и водорастворимыми кислотами и щелочами. [c.288]

    Особенно агрессивная локальная коррозия элементов печи наблюдается при сжигании серосодержащего газа. На хромоникелевых сплавах это проявляется при температуре на 100—150°С ниже предела его окалиностойкости, а для сплавов на никелевой основе такие явления наблюдаются при 650—750 °С, если при сжигании топлива создается восстановительная среда. При достаточном избытке кислорода в продуктах сгорания серосодержащего топлива образующиеся сернистые соединения не проявляют агрессивности вплоть до 850 °С. Если же создаются условия восстановительной среды в результате неполного сгорания газа в печи и при наличии в газе SO2, то скорость коррозии резко возрастает (в 6—25 раз). [c.174]


    Металлические перегородки особенно пригодны для работы с химически агрессивными жидкостями, при повышенной температуре и в условиях значительных механических напряжений. Они изготавливаются в виде перфорированных листов, металлических сеток и тканей из углеродистой или нержавеющей стали, меди, латуни, бронзы, алюминия, никеля, серебра и различных сплавов. [c.363]

    Влияние облучения на коррозию металлов в электролитах довольно разнообразно, поэтому о характере этого влияния нет единого мнения. Часть исследователей считает, что облучение усиливает коррозию алюминия и его сплав в агрессивных по отношению к окислам алюминия средах, в том числе и в горячей воде (рис. 261), другие исследователи утверждают, что под воздействием облучения коррозия значительно не усиливается, а иногда даже затормаживается. [c.371]

    Таким образом, ускоряющее действие излучения на коррозионные процессы связано главным образом с влиянием деструктурирующего эффекта, ухудшающего защитные свойства окисных пленок в агрессивных средах (А1, 2г, Т ), и деполяризующим действием продуктов радиолиза (Ре, Си). Наиболее устойчивыми к влиянию излучения из технических сплавов являются хромоникелевые стали. [c.372]

    Применение электрохимической защиты возможно приложением тока извне или путем присоединения к конструкции, подверженной коррозионному растрескиванию, другого металла с более отрицательным электродным потенциалом — протектора (см. гл. XIX). Эффективное действие этого метода защиты в отношении предотвращения или уменьшения коррозионного растрескивания зависит от природы металлов и сплавов, характера агрессивной среды, применяемой плотности тока и других фак- [c.116]

    Одним из методов получения химически стойких сплавов, как известно, является легирование неустойчивого или малоустойчивого металла атомами более устойчивого металла, например легирование меди золотом или железа никелем и т. п. Рассмотрим процесс коррозии двойного сплава, являющегося гомогенным твердым раствором, в котором один из компонентов вполне стоек в данной агрессивной среде, а другой, наоборот, растворяется в ней. [c.125]

    Защита металлов от газовой коррозии может быть достигнута различными способами защитные покрытия, уменьщение агрессивности газовой среды и др. Наиболее эффективным способом защиты от окисления при высоких температурах является жаростойкое легирование, т. е. введение в состав сплава компонентов, повышающих его жаростойкость. Основными элементами, способствующими созданию защитного слоя на обычных железоуглеродистых, никелевых и других сплавах, являются хром, алюминий и кремний. Эти элементы окисляются при высоких температурах на воздухе легче, чем легируемый металл, и образуют хорошую защитную окалину. [c.146]

    ОЗХН28МДТ — для изготовления деталей сварной аппаратуры, применяемой в производстве минеральных удобрений, серной кислоты всех концентраций, в среде экстракционной фосфорной кислоты (32 % Р2О5) с примесями фтора при температуре до 60 °С и в других производствах для сред повышенной агрессивности. Сплав хорошо сваривается электродуговой и аргонодуговой ручной и автоматической сваркой  [c.69]

    Марки металлов и сплавов согласно ГОСТам, а также рекомендации 1ю выбору их для иаяной, сварной и литой аипаратуры в соответствии с рабочими условиями при ее эксплуатации (давлением, температурой) и для различных агрессивных сред приведены в [4]. [c.64]

    Новые конструкционные металлы и сплавы. Условия эксплуатации оборудования в химической промышленности иногда оказываются СЛИН1К0М жесткими даже для высоколегированных сталей. В этом случае для его изготовления требуется применение дефи-цигиых металлов и их сплавов. Интенсификация отдельных процессов является также предпосылкой необходимости применения таких материалов, например, для ответственных частей аппарата, где в результате наиболее острой фазы реакции имеют место максимальная температура и химическая активность, а также в условиях резких колебаний температуры и теплообмена в агрессивных [c.64]

    С агрессивными химическими средами. Она является экономически оправданной в тех случаях, когда коррозионная среда обладает достаточной электропроводностью и потери напряжения (связанные с протеканием защитного тока), а следовательно, и расход электроэнергии г равнительно невелики. К Чтодная поляризация защищаемого металла достигается либо наложением тока от внешнего источника кaтoднaя защита), либо созданием макрогальванической пары с менее благородным металлом (обычно применяются алюминий, магний, цинк и их сплавы) Он играет здесь роль анода и растворяется со скоростью, достаточной для создания в системе электрического тока необходимой силы (протекторная защита). Растворимый анод при протекторной защите часто называют жертвенным анодом . [c.504]


    Силициды применяют для получения жаростойких и кислотоупорных сплавов и в качестве высокотемпературных полупроводниковых материалов. Из дисилицида молибдена Мо312, выдерживающего нагрев до 1600—1700 С в агрессивной атмосфере, изготовляют нагреватели электропечей. Ряд силицидов /-элементов применяется в атомной энергетике в качестве поглотителя нейтронов и т. д, [c.412]

    С точки зрения коррозионной стойкости, оптимальное содержание Сг в стали составляет 12-14%. Такой уровень легирования Сг обеспечивае г легкую пассивацию поверхносги во многих агрессивных средах, связанных с производством нефтехимических продуктов. При повышении содержания хрома более 12% коррозионная стойкость практически не увеличивается. Вместе с тем в этом случае имеет место проявление склонности стали к охрупчиванию и снижению прочности в связи с формированием в структуре значительного количества ферритной составляющей. 13-14 %-ные хромистые стали с частичным у-а (М)- превращением относят х мартенситно - феррит-ным. Эти стали известны еще под названием полуферритных. По структуре мартенситно-ферритные стали соответствуют сплавам Ре - Сг. Количество 6- феррита в сталях повышается с увеличением содержания Сг и снижением концентрации углерода. С введением углерода границы существования области у - твердых растворов сдвигаются в сторону более высокого содержания Сг. У 13% - ных хромистых сгалей С < 0,25% термокинетическая диаграмма распада аустенита состоит из двух областей превращения. При температурах выше 600 °С в случае достаточно низкой скорости охлаждения возможно образование ферритной составляющей структуры. Ниже 400 °С при более быстром охлаждении наблюдается бездиффузионное превращение аустенита в мартенсит. Количество образовавшегося мартенсита в ка-асдом из указанных температурных ингервалов зависит, главным образом, от скорости охлаждения и содержания углерода в стали. [c.234]

    Особую опасность представляет высокая агрессивность аммиака, воздействующего на медь, серебро, цинк и другие металлы и сплавы. Чугун и сталь наиболее пригодны в качестве материалов для изготовления оборудования и трубопроводов, предназначенных для аммиака. Однако безводный аммиак оказывает сильное коррозионное воздействие на стальные трубопроводы в присутствии двуокиси углерода и воздуха. Для предотвращения коррозионного растрескивания углеродистой стали сжиженный аммиак, транспортируемый по трубопроводам, должен содержать не менее 0,2% (масс.) воды. При меньщем содержании воды в аммиаке в присутствии воздуха возможно коррозионное растрескивание. Для транспортирования сжиженного аммиака применяют трубы, химический состав которых соответствует определенным требованиям. Трубы для аммиакопровода должны изготовляться по специальным техническим условиям, в которых помимо химического состава должны быть оговорены требования к механическим свойствам металла и сварке, допускам толщин стенок, диаметров труб и т. д. [c.35]

    Интенсивность коррозии металла подшипника зависит от ряда факторов, из которых наибольшее значение имеют противоокисли-тельная устойчивость масла и характер продуктов окисления, продолжительность соприкосновения металла с коррозионно-агрессивными продуктами в масле, температура масла, нагрузка на подшипник, наличие воды в масле. Кроме того, имеют значение такие факторы, как свойства применяемого топлива, вентиляция картера и др. Для предотвращения коррозии подшипников применяются специальные антикоррозионные присадки. Испытание на коррозионность проводят для оценки коррозионных свойств базовых масел и антикоррозионной эффективности присадок по отношению к свинцу, являющемуся важной составной частью большинства современных антифрикционных сплавов. [c.215]

    Цветные металлы и сплавы применяют в химическом машиностроении для изготовления элементов манпти и аппаратов, контактирующих с агрессивными средами и работающ х при низких температурах. [c.100]

    Трубы, изготовленные методом горячего прессования из сплава Инколой-802 для двух змеевиков высокотемпературной печи типа SRT конструкции фирмы Луммус (США), применены на этиленовой установке нефтехимического завода в Техасе [1, 2]. Эти трубы примерно в 2—6 раз более долговечны по сравнению с центробежнолитыми трубами нз стали типа НК-40 в аналогичных рабочих условиях (высокая температура, одинаковые теплонапряженностн поверхностей нагрева, воздействие агрессивной среды) при одинаковых напряжениях от действия различных сил. После четырех лет эксплуатации на этом заводе в семи пз девяти печей была произведена полная замена труб печных змеевиков трубами из сплава Инколой-802 . [c.36]

    Для рабочих колес и других деталей проточной части насосов в зависимости от их назначения применяют различные материалы чугун и углеродистую сталь (нейтральные жидкости), хромистые и хромоникелевые стали (кислая вода), (ронзу и цветные сплавы, хромоникелькремнистую сталь, ферросилид, мтан, п. тастмассы, керамику, фарфор, графит, покрытия из резины, смолы, эмали и стскла (химически агрессивные и абразивные жидкости). Рабочие колеса насосов, предназначенных для откачки из нефтяных скважин жидкости со значи- [c.13]

    Разрушенне металла, вызываемое одновременным воздействием агрессивной среды и переменных растягивающих напряжений, называется коррозионной усталостью. В химической иро-мышленности передки случаи такого разрушения деталей аппаратов и машин. Разрушение вследствие усталости обычно сопровождается образованием меж- и транскристаллитных трещин, развитие которых идет главшэш образом в период приложения растягивающих напряжений, В условиях переменных напряжений разрушение металлов и сплавов происходит при напряжениях, меньших чем напряжения, необходимые для нозникновения коррозионного растрескивания при растягивающих нагрузках. [c.106]

    При легировании коррозионно-неустойчивого металла атомами металла устойчивого, в данной агрессивной среде, при условии, что оба компонента дают твердый раствор, и при отсутствии в сплаве заметной диффузии, полученный сплав приобретает химическую стойкость только при определенных соотношениях компонентов в сплаве. Эти определенные соотношения для таких двухкомпонентных твердых растворов вытекают нз так называемого правила границ устойчивости твердых раст1 оров, сформулированного Тамманом и выражающего зависимость между концентрацией твердого раствора и его коррозионной устойчивостью (так называемое правило п/8). [c.125]

    В. тапной главе рассматриваются вопросы химической коррозии металлов. Процесс разрушения металлов и сплавов вследствие взапмоде11ствия их с внешней средой, не сопровождающийся возникновением электрических токов, называют химическо коррозией. Характерной особенностью процесса химической коррозии является, в отличие от электрохимической коррозии, образование продуктов коррозшт непосредственно в месте взаимодействия металла с агрессивной средой. Химическая коррозия подчиняется основным законам химической кинетики гетерогенных реакций и наблюдается ири действии на металл сухих газов или жидких неэлектролитов. [c.131]

    Для. ч1шическо11 и иефтехимичеекой промышленности характерны газовые среды, действующие весьма агрессивно на металлы и сплавы. Такими агрессивными газами являются окислы азота, серннст.ие соединения, хлористый водород, хлор и др, [c.148]

    К числу факторов, влияющих на скорость коррозии в атмосфере, не меньщую роль, чем степень влажности воздуха, играет остаи пленки, скондеиеированиой на металлической поверхности. Состав пленки и степень ее агрессивности зависят от степени загрязненности воздуха и характера этих загрязнений. В зависимости от этих условий, скорость атмосферной коррозии одного и того же металла или сплава может изменяться в десятки и сотни раз. [c.177]

    Установлено также влияние ЗОо на скорость коррозии некоторых алюминиевых сплавов во влажном воздухе. Как это видно нз кривых, приведенных на рис. 136, алюминиевый сплав Д16 в отсутствие в воздухе примесей ЗОг достаточно устойчив в ус-лопиях атмосферной коррозии. Загр5/зненность индустриальной атмосферы другими агрессивными газами сказывается также [c.179]

    КОРРОЗИЯ ЖЕЛЕЗА И ЖЕЛЕЗОУП1ЕРОДИСТЫХ СПЛАВОВ В АГРЕССИВНЫХ СРЕДАХ [c.200]

    Ко цюзия железа и железоуглеродистых сплавов в агрессивных средах [c.201]

    Таким образом, следует считать, что минимальное содержание хрома в малоуглеродистых хромистых сталях, обладающих коррозионной с. тойкостью в агрессивных средах, должно быть ие менее 13—15%. Коррозионная стойкость хромистых сталей в значительной степени зависит от содержания в них углерода. Так, в сталях, содержащих 13—15% Сг, наблюдается резкое разблагораживание потенциала при содержании углерода 0,3—0,4%-Чем больше содержание углерода в сплаве, тем больше хрома расходуется на образование карбидов и тем больше обедняется твердый раствор хромом. Сталь 1X13 при прочих равных условиях имеет более высокую коррозионную стойкость, чем сталь 2X13, а последняя обладает повышенной коррозионной стойкостью по сравнению со сталью 3X13 и т. д. [c.214]

    В неокислительных агрессивных средах защитная пленка на поверхности хромистых сталей не образуется. Этим объясняется то, что в соляной и разбавленных растворах серной кислоты эти стали неустойчивы. В отличие от азотной кислоты, в иеокислительных кислотах при унеличении процентного содержания хрома в сплаве его устойчивость не только не увеличивается, но наблюдается даже ускорение коррозии. [c.215]


Смотреть страницы где упоминается термин Агрессивные сплавов: [c.28]    [c.68]    [c.487]    [c.16]    [c.254]    [c.17]    [c.31]    [c.99]    [c.177]    [c.81]    [c.129]    [c.129]    [c.130]    [c.148]    [c.148]    [c.163]    [c.205]    [c.246]   
Коррозионная стойкость материалов (1975) -- [ c.118 ]

Коррозионная стойкость материалов Издание 2 (1975) -- [ c.8 ]

Коррозионная стойкость материалов в агрессивных средах химических производств Издание 2 (1975) -- [ c.118 ]




ПОИСК





Смотрите так же термины и статьи:

Агрессивные среды медь и сплавы

Агрессивные среды никель и сплавы

Агрессивные среды новые сплавы

Агрессивные среды сплавы

Агрессивные среды титан и сплавы

Кислоты как агрессивные среды на металлы и сплавы

Коррозионная стойкость некоторых металлов и сплавов в агрессивных средах

Коррозионная стойкость сплавов титана в различных агрессивных средах

Коррозия железа и железоуглеродистых сплавов в агрессивных средах

Медные сплавы коррозия в агрессивных среда

Применение титана и его сплавов в коррозионно-агрессивных средах производства катализаторов

Устойчивость некоторых металлов и сплавов в коррозионно-агрессивных средах

Щелочи как агрессивные среды на металлы и сплавы

азы агрессивные, воздействие на металлы и сплавы



© 2025 chem21.info Реклама на сайте